
Sandbox Based Optimal Offset Estimation
Nathan T. Brown and Resit Sendag

Department of Electrical, Computer, and Biomedical Engineering

University of Rhode Island, Kingston, RI, USA

(nattayb, sendag)@ele.uri.edu

Abstract

In this paper, we introduce a prefetching mechanism

that dynamically estimates optimal sequential offset

based on accuracy and timeliness. Our prefetcher is

based on the recently-proposed sandbox prefetching

method. The original sandbox prefetching utilizes

multiple sequential prefetchers, which are evaluated

based on theoretical prefetches to identify the highest

performing offsets. However, problems arise when a

benchmark requires a large prefetch distance for

prefetching to be useful. We modified the offset scoring

of the sandbox to take into account the estimated fill-

time, which adds another evaluation dimension to the

sandbox scores by adjusting the prefetchers with

inadequate distance. The coupling of both accuracy and

timeliness estimation reveals the most efficient

sequential prefetcher. The highest corrected scoring

prefetcher is then gated by a threshold. If the corrected

score exceeds the requirement, it is then promoted to

live status for the next evaluation period.

I. INTRODUCTION

The purpose of a data prefetcher is to predict the
blocks of memory which will be demanded by the given
application in the future. In this way the number of
cache misses is minimized throughout the memory
hierarchy improving the performance. While there are a
variety of unique algorithms and techniques for
accomplishing this, no single approach will succeed on
all processor architectures and/or for all applications. An
assortment of hazards plague prefetchers based on the
size, bandwidth and cache inclusion policies for multi-
level cache architectures. This proposal aims to expand
upon the benefits of Sandbox Prefetching [1] by
dynamically selecting the live prefetcher based not only
on accuracy but also timeliness. A mechanism is
employed to track the real-time latency of requests to
the lower level memories (L3 and Main Memory) in an
effort to track when lines are filled.

II. RELATED WORK

A. Sequential Prefetching

Arguably one of the simplest and yet very effective
prefetchers is the Sequential Prefetcher. This type of
prefetcher takes advantage of the spatial locality many

applications exhibit when accessing memory. Prefetch
predictions are determined by adding a fixed negative or
positive Offset to the accessed address. In the case of a
next line prefetcher a stream of accesses such as A1, A2
… An will yield a minimum of one prefetch to the
addresses A2, A3 … AN+1. A prefetching Distance or
Degree can be added to increase the timeliness and/or
the aggressiveness. While Sequential prefetchers can
produce significant speedups, one of the inherent
problems is that each benchmark will have different
access patterns which cater to a given offset, distance,
and degree combination. In a hostile benchmark the lack
of confirmation will significantly deteriorate the
performance. The result is that a single prefetcher will
rarely perform well over a wide array of applications.

B. Sandbox Prefetching

This type of prefetching system utilizes a real-time
confirmation based system to evaluate a series of
unique-offset sequential prefetchers. Proposed by
Pugsley et al. [1], the Sandbox is a trial area for which
candidate prefetchers make predictions on each cache
access. On each cache access the sandbox is tested to
see if it contains the address. If there is a hit in the
sandbox, the score for the prefetcher is increased. At the
end of the evaluation period the sandbox is reset and a
new prefetcher is evaluated. Following the round robin
evaluation, prefetchers are allowed to make prefetches
based on graded thresholds with priority given to the
more immediate offsets.

This approach identifies the most accurate
prefetchers, meaning those which are correct the most
over a period of time. However, while a given prefetcher
may be the most accurate, it might not be far enough
ahead of the impending demand request to benefit fully.

III. SANDBOX BASED OPTIMAL OFFSET

ESTIMATION

The principle of Sandbox Based Optimal Offset
Estimation is to evaluate candidate prefetchers to
determine which produces the most accurate prefetches
that are filled prior to their demand access. Identification
of the prefetcher with the optimum offset enables less
overall prefetches to be issued while at the same time
reducing the risk of cache pollution. SBOOE expands
upon the scoring system of Sandbox Prefetching to
evaluate candidate prefetchers based on their accuracy,

as well as their timeliness. Collectively, the two
parameters can be utilized to create a measure of a
prefetchers usefulness to the system.

A. Memory Access Latency Estimation

In order to track when simulated prefetches would
arrive in the cache it is necessary to determine the
latency for an access to the L3 cache or main memory.
Figure 1 illustrates how this is accomplished. 1)
Demand misses are tracked and tagged with the cycle at
which the miss occurred. 2) When the address is filled in
the L2 cache, the elapsed cycles are calculated using the
difference between the current cycle and the tag. 3) This
instantaneous latency is then shifted into a First-In
First-Out (FIFO) buffer. 4) When the FIFO reaches
maximum occupancy an average is calculated each time
a new latency entry is added. This is done by summing
the latencies (which can be done using simple two
operations: subtract the oldest from the current sum and
add the newest), and 5) then shifting them by
log2(Latency Buffer Size). This real-time measurement is
used as an approximation of the turnaround time for a
given prefetch.

B. Sandbox Implementation and Scoring

Each sandbox entry is composed of two fields: The
first is the cache line address predicted by the candidate
prefetcher. The second is the Cycles to Arrival field
which is used to determine the remaining cycles until
the simulated prefetch would be filled in the L2 cache.
The sandbox itself is composed of n total entries where
n is the number of accesses in the evaluation period. The
sandbox structure is organized as a FIFO queue.

The implementation also contains three registers for
maintaining scores which are later used for evaluation.
The following define each of the three:

The Sandbox Score details the number of L2
accesses during the evaluation period which were
present in the sandbox. This score essentially represents
the theoretical accuracy of the prefetcher.

The Late Score contains the number of hits in the
sandbox which wouldn’t have been filled yet in the
cache. This is determined by evaluating whether the
Cycles to Arrival field was non-zero at the time of the
access. This represents the timeliness or lack thereof of
the prefetcher.

Finally, the Useful Score is not calculated each
access but rather upon the completion of the sandbox
evaluation period. The value is the Sandbox Score
adjusted by the Late Score (SS – SL = SU) and represents
a balance between accuracy and timeliness.

Each L2 access, the sandbox is tested to determine if
the access was present. If a sandbox hit occurs the
Sandbox Score is incremented by one and the Cycles to
Arrival field of the identified address is evaluated. If the
remaining number of cycles is non-zero indicating it
theoretically would not yet have arrived in the cache
then the Late Score is incremented by one, otherwise
nothing happens. This process is repeated each access
while the sandbox occupancy is between 1 and n, until n
accesses have each been verified. Upon the completion
of the evaluation period the Useful Score is calculated.

C. Architecture and Evaluation

Unlike Sandbox Prefetching, SBOOE utilizes a
separate sandbox for each sequential prefetcher. While
this significantly increases the storage requirement it
allows each prefetcher to be evaluated during the same
period. Since all the sandboxes are synchronized in
respect to accesses and predictions, the completion of
the sandbox evaluation period signals the prefetcher
score evaluation. During the process, the prefetcher with
the highest Useful Score is identified. The determined
prefetcher’s Sandbox Score is then compared to a
threshold which is established as a quarter of the
maximum possible score n. This value was identified as
optimal to stop prefetching during periods of
uncertainty. If the threshold is exceeded the prefetcher
makes a prediction, otherwise no prefetch is made. A
single prefetch is the maximum allowed for any
prefetcher stimulus (L2 cache access).

Figure 2 provides an example demonstrating the
utility of estimating the arrival time of issued prefetches.
The results are from a single evaluation period (1024 L2
accesses) during a gcc simulation. The two highest
scores (UsefulScore + LateScore = SandboxScore) are
the +4 and +8 offset prefetchers. This strongly indicates
the stride is 4. However, while the sandbox score is
significantly greater than the +4 prefetcher, once it is
adjusted for timeliness it is evident that the +8
prefetcher is a more useful choice overall. If a single
prefetch is to be made, the +8 prefetcher will ideally
yield a greater amount of cache hits.

Figure 1: Lower level memory access latency estimation.

IV. PREFETCHING FRAMEWORK

Collectively, this proposal implements a series of
sequential prefetchers with varying offsets and their
corresponding sandboxes. Through experimentation a
sandbox size of 1024 entries was found to be optimal.
The number of candidate prefetchers was driven by
hardware storage limitations. Since the rate at which L2
misses occur varies wildly by benchmark, the number of
latency samples utilized for each average had an
important effect on performance. A slowly updating
average latency yields inaccuracies which directly affect
the candidate prefetcher scoring. Through testing a size
of 32 averages was identified as the best period.

A. Sequential Prefetchers

Nine sequential prefetchers with offsets between -1
and +8 are implemented along with their corresponding
sandboxes and supporting resources.

B. Miss Status Holding Registers

While the competition simulator includes a MSHR
with 16 registers it only allows the prefetcher access to
only the occupancy but not the contents. To overcome
this challenge, and to aid with the Lower Level Memory
Latency estimation a user MSHR of the same size as the
system MSHR was implemented. This was done to
reduce the chance of secondary misses.

C. Prefetch Buffer

A 64 entry prefetch buffer was implemented to filter
potential prefetches. The buffer covered prefetches
issued to both the L2 and L3 (LLC) cache. They are
removed when the FIFO is full and a new prefetch is
issued.

V. HARDWARE AND COMPETITION

REQUIREMENTS

The following breaks down the hardware cost of the
SBOOE prefetching framework by function and
component. To conserve storage space for the buffers
the 64 bit byte addresses are first converted to cache line
addresses and then truncated to 16 bits for storage. The
MSHR cycle buffer stores the lower 16 bits of the
processor cycle. The Cycles to Arrival tag in each
sandbox entry is 10 bits. The extra field in Table1 refers
to head and tail indices. The MSHR address and cycle
buffer can share them since they’re synchronized as can
the sandbox address and cycles to arrive buffer. Overall
92.56% of the hardware budget was utilized.

Table 1: SBOOE hardware cost.

Component
Hardware

Part Size Width Extra Cost

Access

Latency

Estimation

MSHR

Address

Buffer

16
16 + 1

bits
8 bits 280 bits

MSHR

Cycle

Buffer

16 16 bits 0 bits 256 bits

Latency

Buffer
32 10 bits 10 bits 330 bits

Last L2

Access

Cycle

1 16 bits 0 bits 16 bits

Average

Latency

Cycles

1 16 bits 0 bits 16 bits

Prefetch

Buffer

Prefetch

Buffer
64 16 bits 12 bits 1036 bits

Sequential

Prefetchers

Prediction

Registers

(9)

1 64 bits 0 bits 576 bits

Primary

Index
1 4 bits 0 bits 4 bits

Sandboxes

Address

Buffer (9)
1024 16 bits 10 bits 147,546 bits

Cycles to

Arrival

Buffer (9)

1024 10 bits 0 bits 92,160 bits

Sandbox

Score (9)
1 16 bits 0 bits 144 bits

Late Score

(9)
1 16 bits 0 bits 144 bits

Useful

Score (9)
1 16 bits 0 bits 144 bits

Total 242,652 bits

Percentage 92.56%

VI. RESULTS AND CONCLUSION

Figure 3 displays the speedups compared to no
prefetching performed by the SBOOE prefetcher for 40
benchmarks from SPEC CPU2000 [2], SPEC CPU2006
[3] and Olden [4] benchmark suites. Representative
100M-instruction traces were generated using Simpoint
2.0 [5]. The results were obtained for each of the four
competition configurations: configuration 1 (no_flags),
configuration 2 (small_llc), configuration 3

0

100

200

300

400

500

600

-1 1 2 3 4 5 6 7 8

Useful Score Late Score

Figure 2: Single evaluation period: useful, late

and sandbox score (useful + late).

(low_bandwidth) and configuration 4 (scramble_loads).
For all simulations there were 10 million warmup
instructions (warmup_instructions) followed by 90
million simulation instructions
(simulation_instructions). Performance for the
benchmarks was improved by a peak of 16.5% on
configuration 2, a minimum of 10.4% on configuration
3 for a total competition score 4.589. In comparison,
AMPM-Lite had a competition score of 4.511 and a
pure Sandbox implementation earned a score of 4.578.
Several benchmarks consistently performed poorly
across configurations most notably: ammp, milc and
xalancbmk. However, when the individual sequential
prefetchers (-16 to +16) were run on the unfavorable
benchmarks only +1 was ever able to have any positive
effect on performance. This suggests that most likely the
applications do not follow a stride very often and would
potentially benefit from a PC based prefetcher with
confirmation or other context-based prefetchers.

In conclusion, measuring the fill latency for demand
misses has proved to be an effective measurement of
lower level memory access latency. When coupled with
a real-time evaluation system like Sandbox Prefetching
the evaluation of both accuracy as well as timeliness
proves to be effective.

VII. ACKNOWLEDGEMENT

We would like to thank the anonymous reviewers for

their helpful suggestions. This work is partly supported

by the National Science Foundation under grant CNS-

1405862.

REFERENCES

[1] Seth Pugsley, Zeshan Chishti, Chris Wilkerson, Troy Chuang,

Robert Scott, Aamer Jaleel, Shih-Lien Lu, Kingsum Chow,
Rajeev Balasubramonian, “Sandbox Prefetching: Safe, Run-
Time Evaluation of Aggressive Prefetchers,” 20th International
Symposium on High-Performance Computer Architecture
(HPCA-20) , Orlando, February 2014.

[2] Standard Performance Evaluation Corporation CPU2006
Benchmark Suite. http://www.spec.org/cpu2000/

[3] Standard Performance Evaluation Corporation CPU2006
Benchmark Suite. http://www.spec.org/cpu2006/

[4] A. Rogers, M. Carlisle, J. Reppy, and L. Hendren, “Supporting
Dynamic Data Structures on Distributed Memory Machines,”
ACM Transactions on Programming Languages and Systems,
Mar. 1995

[5] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder,
“Automatically Characterizing Large Scale Program Behavior,”
ASPLOS, 2002.

0.000

0.200

0.400

0.600

0.800

1.000

1.200

1.400

1.600

1.800

2.000
Configuration 1 Configuration 2 Configuration 3 Configuration 4

Figure 3: Benchmark speedups by configuration.

