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Abstract 

In this paper, we introduce a prefetching mechanism 

that dynamically estimates optimal sequential offset 

based on accuracy and timeliness. Our prefetcher is 

based on the recently-proposed sandbox prefetching 

method. The original sandbox prefetching utilizes 

multiple sequential prefetchers, which are evaluated 

based on theoretical prefetches to identify the highest 

performing offsets. However, problems arise when a 

benchmark requires a large prefetch distance for 

prefetching to be useful. We modified the offset scoring 

of the sandbox to take into account the estimated fill-

time, which adds another evaluation dimension to the 

sandbox scores by adjusting the prefetchers with 

inadequate distance. The coupling of both accuracy and 

timeliness estimation reveals the most efficient 

sequential prefetcher. The highest corrected scoring 

prefetcher is then gated by a threshold. If the corrected 

score exceeds the requirement, it is then promoted to 

live status for the next evaluation period.  

I. INTRODUCTION 

The purpose of a data prefetcher is to predict the 
blocks of memory which will be demanded by the given 
application in the future. In this way the number of 
cache misses is minimized throughout the memory 
hierarchy improving the performance. While there are a 
variety of unique algorithms and techniques for 
accomplishing this, no single approach will succeed on 
all processor architectures and/or for all applications. An 
assortment of hazards plague prefetchers based on the 
size, bandwidth and cache inclusion policies for multi-
level cache architectures. This proposal aims to expand 
upon the benefits of Sandbox Prefetching [1] by 
dynamically selecting the live prefetcher based not only 
on accuracy but also timeliness. A mechanism is 
employed to track the real-time latency of requests to 
the lower level memories (L3 and Main Memory) in an 
effort to track when lines are filled. 

II. RELATED WORK   

A. Sequential Prefetching 

Arguably one of the simplest and yet very effective 
prefetchers is the Sequential Prefetcher. This type of 
prefetcher takes advantage of the spatial locality many 

applications exhibit when accessing memory. Prefetch 
predictions are determined by adding a fixed negative or 
positive Offset to the accessed address. In the case of a 
next line prefetcher a stream of accesses such as A1, A2 
… An will yield a minimum of one prefetch to the 
addresses A2, A3 … AN+1. A prefetching Distance or 
Degree can be added to increase the timeliness and/or 
the aggressiveness. While Sequential prefetchers can 
produce significant speedups, one of the inherent 
problems is that each benchmark will have different 
access patterns which cater to a given offset, distance, 
and degree combination. In a hostile benchmark the lack 
of confirmation will significantly deteriorate the 
performance. The result is that a single prefetcher will 
rarely perform well over a wide array of applications. 

B. Sandbox Prefetching 

This type of prefetching system utilizes a real-time 
confirmation based system to evaluate a series of 
unique-offset sequential prefetchers. Proposed by 
Pugsley et al. [1], the Sandbox is a trial area for which 
candidate prefetchers make predictions on each cache 
access. On each cache access the sandbox is tested to 
see if it contains the address. If there is a hit in the 
sandbox, the score for the prefetcher is increased. At the 
end of the evaluation period the sandbox is reset and a 
new prefetcher is evaluated. Following the round robin 
evaluation, prefetchers are allowed to make prefetches 
based on graded thresholds with priority given to the 
more immediate offsets. 

This approach identifies the most accurate 
prefetchers, meaning those which are correct the most 
over a period of time. However, while a given prefetcher 
may be the most accurate, it might not be far enough 
ahead of the impending demand request to benefit fully.  

III. SANDBOX BASED OPTIMAL OFFSET 

ESTIMATION 

The principle of Sandbox Based Optimal Offset 
Estimation is to evaluate candidate prefetchers to 
determine which produces the most accurate prefetches 
that are filled prior to their demand access. Identification 
of the prefetcher with the optimum offset enables less 
overall prefetches to be issued while at the same time 
reducing the risk of cache pollution. SBOOE expands 
upon the scoring system of Sandbox Prefetching to 
evaluate candidate prefetchers based on their accuracy, 



as well as their timeliness. Collectively, the two 
parameters can be utilized to create a measure of a 
prefetchers usefulness to the system.  

A. Memory Access Latency Estimation 

In order to track when simulated prefetches would 
arrive in the cache it is necessary to determine the 
latency for an access to the L3 cache or main memory. 
Figure 1 illustrates how this is accomplished. 1) 
Demand misses are tracked and tagged with the cycle at 
which the miss occurred. 2) When the address is filled in 
the L2 cache, the elapsed cycles are calculated using the 
difference between the current cycle and the tag. 3) This 
instantaneous latency is then shifted into a First-In 
First-Out (FIFO) buffer. 4) When the FIFO reaches 
maximum occupancy an average is calculated each time 
a new latency entry is added. This is done by summing 
the latencies (which can be done using simple two 
operations: subtract the oldest from the current sum and 
add the newest), and 5) then shifting them by 
log2(Latency Buffer Size). This real-time measurement is 
used as an approximation of the turnaround time for a 
given prefetch. 

B. Sandbox Implementation and Scoring 

Each sandbox entry is composed of two fields: The 
first is the cache line address predicted by the candidate 
prefetcher. The second is the Cycles to Arrival field 
which is used to determine the remaining cycles until 
the simulated prefetch would be filled in the L2 cache. 
The sandbox itself is composed of n total entries where 
n is the number of accesses in the evaluation period. The 
sandbox structure is organized as a FIFO queue.  

The implementation also contains three registers for 
maintaining scores which are later used for evaluation. 
The following define each of the three: 

The Sandbox Score details the number of L2 
accesses during the evaluation period which were 
present in the sandbox. This score essentially represents 
the theoretical accuracy of the prefetcher.  

The Late Score contains the number of hits in the 
sandbox which wouldn’t have been filled yet in the 
cache. This is determined by evaluating whether the 
Cycles to Arrival field was non-zero at the time of the 
access. This represents the timeliness or lack thereof of 
the prefetcher. 

Finally, the Useful Score is not calculated each 
access but rather upon the completion of the sandbox 
evaluation period. The value is the Sandbox Score 
adjusted by the Late Score (SS – SL = SU) and represents 
a balance between accuracy and timeliness. 

Each L2 access, the sandbox is tested to determine if 
the access was present. If a sandbox hit occurs the 
Sandbox Score is incremented by one and the Cycles to 
Arrival field of the identified address is evaluated. If the 
remaining number of cycles is non-zero indicating it 
theoretically would not yet have arrived in the cache 
then the Late Score is incremented by one, otherwise 
nothing happens. This process is repeated each access 
while the sandbox occupancy is between 1 and n, until n 
accesses have each been verified. Upon the completion 
of the evaluation period the Useful Score is calculated. 

C. Architecture and Evaluation 

Unlike Sandbox Prefetching, SBOOE utilizes a 
separate sandbox for each sequential prefetcher. While 
this significantly increases the storage requirement it 
allows each prefetcher to be evaluated during the same 
period. Since all the sandboxes are synchronized in 
respect to accesses and predictions, the completion of 
the sandbox evaluation period signals the prefetcher 
score evaluation. During the process, the prefetcher with 
the highest Useful Score is identified. The determined 
prefetcher’s Sandbox Score is then compared to a 
threshold which is established as a quarter of the 
maximum possible score n. This value was identified as 
optimal to stop prefetching during periods of 
uncertainty. If the threshold is exceeded the prefetcher 
makes a prediction, otherwise no prefetch is made. A 
single prefetch is the maximum allowed for any 
prefetcher stimulus (L2 cache access). 

Figure 2 provides an example demonstrating the 
utility of estimating the arrival time of issued prefetches.  
The results are from a single evaluation period (1024 L2 
accesses) during a gcc simulation. The two highest 
scores (UsefulScore + LateScore = SandboxScore) are 
the +4 and +8 offset prefetchers. This strongly indicates 
the stride is 4. However, while the sandbox score is 
significantly greater than the +4 prefetcher, once it is 
adjusted for timeliness it is evident that the +8 
prefetcher is a more useful choice overall. If a single 
prefetch is to be made, the +8 prefetcher will ideally 
yield a greater amount of cache hits. 

Figure 1: Lower level memory access latency estimation. 



IV. PREFETCHING FRAMEWORK 

Collectively, this proposal implements a series of 
sequential prefetchers with varying offsets and their 
corresponding sandboxes. Through experimentation a 
sandbox size of 1024 entries was found to be optimal. 
The number of candidate prefetchers was driven by 
hardware storage limitations. Since the rate at which L2 
misses occur varies wildly by benchmark, the number of 
latency samples utilized for each average had an 
important effect on performance. A slowly updating 
average latency yields inaccuracies which directly affect 
the candidate prefetcher scoring. Through testing a size 
of 32 averages was identified as the best period. 

A. Sequential Prefetchers 

Nine sequential prefetchers with offsets between -1 
and +8 are implemented along with their corresponding 
sandboxes and supporting resources.  

B. Miss Status Holding Registers 

While the competition simulator includes a MSHR 
with 16 registers it only allows the prefetcher access to 
only the occupancy but not the contents. To overcome 
this challenge, and to aid with the Lower Level Memory 
Latency estimation a user MSHR of the same size as the 
system MSHR was implemented. This was done to 
reduce the chance of secondary misses. 

C. Prefetch Buffer 

A 64 entry prefetch buffer was implemented to filter 
potential prefetches. The buffer covered prefetches 
issued to both the L2 and L3 (LLC) cache. They are 
removed when the FIFO is full and a new prefetch is 
issued.  

V. HARDWARE AND COMPETITION 

REQUIREMENTS 

The following breaks down the hardware cost of the 
SBOOE prefetching framework by function and 
component. To conserve storage space for the buffers 
the 64 bit byte addresses are first converted to cache line 
addresses and then truncated to 16 bits for storage. The 
MSHR cycle buffer stores the lower 16 bits of the 
processor cycle. The Cycles to Arrival tag in each 
sandbox entry is 10 bits. The extra field in Table1 refers 
to head and tail indices. The MSHR address and cycle 
buffer can share them since they’re synchronized as can 
the sandbox address and cycles to arrive buffer. Overall 
92.56% of the hardware budget was utilized. 

Table 1: SBOOE hardware cost. 

Component 
Hardware 

Part Size Width Extra Cost 

Access 

Latency 

Estimation 

MSHR 

Address 

Buffer 

16 
16 + 1 

bits 
8 bits 280 bits 

MSHR 

Cycle 

Buffer 

16 16 bits 0 bits 256 bits 

Latency 

Buffer 
32 10 bits 10 bits 330 bits 

Last L2 

Access 

Cycle 

1 16 bits 0 bits 16 bits 

Average 

Latency 

Cycles 

1 16 bits 0 bits 16 bits 

Prefetch 

Buffer 

Prefetch 

Buffer 
64 16 bits 12 bits 1036 bits 

Sequential 

Prefetchers 

Prediction 

Registers 

(9) 

1 64 bits 0 bits 576 bits 

Primary 

Index 
1 4 bits 0 bits 4 bits 

Sandboxes 

Address 

Buffer (9) 
1024 16 bits 10 bits 147,546 bits 

Cycles to 

Arrival 

Buffer (9) 

1024 10 bits 0 bits 92,160 bits 

Sandbox 

Score (9) 
1 16 bits 0 bits 144 bits 

Late Score 

(9) 
1 16 bits 0 bits 144 bits 

Useful 

Score (9) 
1 16 bits 0 bits 144 bits 

Total     242,652 bits 

Percentage     92.56% 

 

VI. RESULTS AND CONCLUSION 

Figure 3 displays the speedups compared to no 
prefetching performed by the SBOOE prefetcher for 40 
benchmarks from SPEC CPU2000 [2],  SPEC CPU2006 
[3] and Olden [4] benchmark suites. Representative 
100M-instruction traces were generated using Simpoint 
2.0 [5]. The results were obtained for each of the four 
competition configurations: configuration 1 (no_flags), 
configuration 2 (small_llc), configuration 3 
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Figure 2: Single evaluation period: useful, late 

and sandbox score (useful + late). 



(low_bandwidth) and configuration 4 (scramble_loads). 
For all simulations there were 10 million warmup 
instructions (warmup_instructions) followed by 90 
million simulation instructions 
(simulation_instructions). Performance for the 
benchmarks was improved by a peak of 16.5% on 
configuration 2, a minimum of 10.4% on configuration 
3 for a total competition score 4.589. In comparison, 
AMPM-Lite had a competition score of 4.511 and a 
pure Sandbox implementation earned a score of 4.578. 
Several benchmarks consistently performed poorly 
across configurations most notably: ammp, milc and 
xalancbmk. However, when the individual sequential 
prefetchers (-16 to +16) were run on the unfavorable 
benchmarks only +1 was ever able to have any positive 
effect on performance. This suggests that most likely the 
applications do not follow a stride very often and would 
potentially benefit from a PC based prefetcher with 
confirmation or other context-based  prefetchers.  

In conclusion, measuring the fill latency for demand 
misses has proved to be an effective measurement of 
lower level memory access latency. When coupled with 
a real-time evaluation system like Sandbox Prefetching 
the evaluation of both accuracy as well as timeliness 
proves to be effective. 
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Figure 3: Benchmark speedups by configuration. 


