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Abstract 

Access Map Pattern Matching Prefetch (AMPM) is a 
state-of-art data prefetching technique. In this paper we 
present an optimized AMPM-based prefetcher coupled with 
configurable cache line/block sizing. Our optimizations 
include (a) prefetching from infrequently-accessed memory 
zones and (b) fixing inaccurate access states of the original 
AMPM prefetcher. Also we introduce a configurable cache 
line/block sizing scheme to exploit strong spatial locality if 
it is detected. We evaluate our prefetcher in the DPC2 
framework. For a set of 27 SPEC CPU 2006 benchmarks, 
our experimental results show that our scheme achieves a 
10.5% system-level performance improvement compared to 
it without prefetching.  

1. Introduction 

Memory prefetching is widely used in modern 
processors since it can fetch needed data in advance and 
hide the memory access latency effectively. Current 
prefetchers track data streams, which are identified based on 
program counters (PCs), spatial patterns or combinations of 
both, to predict and prefetch possibly-used data in the future. 

Access Map Pattern Matching Prefetch (AMPM) 
proposed by Ishii [3] is a state-of-art prefetcher. Different 
from stride-based prefetchers and GHR-based [4] 
prefetchers, AMPM is not based on PCs. AMPM attaches 
concentration zones with cache-line bitmaps to identify the 
spatial pattern of each equal-sized zone. However, AMPM 
cannot make effective predictions when the zone just starts 
being accessed or when the zone is infrequently accessed, 
i.e., cold zones. Also, the cache-line bitmap cannot reflect 
accurate access states when parts of the blocks within the 
zone are evicted from the cache. 

We propose two optimizations, (1) cold zone 
optimization and (2) clear zone optimization, to overcome 

the limitations of the AMPM prefetcher. Furthermore, we 
design an LLC prefetching algorithm based on configurable 
block sizing (CBS). 

The cold zone optimization tracks the common offsets 
within zones and prefetches these cache lines when a new 
zone is encountered. The clear zone optimization tracks 
whether the bitmap information within zones is accurate. 
Once the bitmap of a zone is detected as inaccurate, the 
zone will be evicted from AMPM such that the new/updated 
spatial pattern of the zone can be reconstructed.  

The CBS-based prefetcher samples the cache with 
different block sizes. At the end of each epoch, the block 
size which leads to highest performance, considering both 
hit rate and memory bandwidth, will be selected as the 
prefetching block size (PBS) for the next epoch.  

In Section 2, we motivate our schemes. In Section 3 we 
present the design of our prefetcher and prefetching 
algorithm. In Section 4, the complexity and overhead are 
discussed. In Section 5 the performance results are 
presented. In Section 6, we discuss further optimizations 
and conclude the paper. 

2. Motivation 

2.1. Cold Zone Optimization 

  Figure 1 shows an example trace from the benchmark 
milc. The zone size is 4kB and we also show the zone 
offsets along the trace in Figure 1. From Figure 1, we can 
see that each zone is accessed relatively infrequently 
(around 8 times). As a result, AMPM cannot detect the 
spatial pattern before the zone is evicted from AMPM.    

On the other hand, there are common offsets across 
different zones. From Figure 1, we can see that among the 
accesses to different zones, the offsets 0x880 and 0xa80 are 
common ones. If we could detect these common offsets, we 

Access trace:                   1bc9488d7c64880, 1bc9488d7c64a40, 1bc9488d7c648c0, … … , 1bc9488d7c64a80, 
Offsets within a 4kB zone:       880,                                 a40,                              8c0,         …                      a80 
Access trace:                  1bc94d0de078080, 1bc9488d7c64900, 1bc94d0de078880, 1bc94d0de078bc0, 1bc94d0de078a80 
Offsets within a 4kB zone:      080,                                  900,                              880,                            bc0,                           a80          

Figure 1. L2 access trace and offset of benchmark milc.                
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can use them to prefetch data for those zones whose access 
patterns have not been trained, i.e., when zones are cold. 

2.2.  Clear Zone Optimization 

In AMPM, the bitmaps of each zone tracks the access 
and prefetch status of each cache line in the zone. It is not 
updated when a cache blocks is evicted. Thus we may get 
wrong information from the bitmap and lose chances to 
prefetch. For example, a part of the access bitmap in a zone 
may appear as 1111 while the actual state is 1110 due to 
eviction, either replaced by demanded data or replaced due 
to the inclusion property. In this case, we lose the chance to 
prefetch the block represented by the fourth bit since the 
block is regarded as accessed in AMPM. 

To deal with the inaccurate status within a zone, we can 
clear the bitmaps of the zone to get a chance to reconstruct 
the spatial pattern.  

2.3.  CBS-Directed Prefetch 

Applications with strong spatial locality prefer large 
cache line/block sizes. With larger block sizes, the cache hit 
rate will also increase. However, if the block size becomes 
too large, it would not only consume memory bandwidth 
and energy but also pollute the cache if the spatial locality is 
strong enough. In our scheme, we resort to samplers and 
design an algorithm to choose the best block size, which is 
then used to direct next/previous n-line prefetching. 

3. Design Overview 

3.1.  Common Offset Table 

For the cold zone optimization, we need to detect the 
common offsets across accesses to different zones. To do so, 
we use a common offset table to record these offsets within 
zones. Each entry is used for one distinct offset. There are 4 
fields in each entry as shown in Figure 2. The 6-bit offset 
field records a zone offset at the cache line granularity. The 
5-bit field “counter” indicates how possible this offset will 
be accessed in the future. The 1-bit “pref” field indicates 
whether a prefetching request has been issued using this 
offset. The LRU field is used for replacement from the 
common offset table. An offset is detected as a common one 
if its “counter” field is larger than a threshold. Then, when a 
new zone is encountered, prefetches requests are issued 
based on the common offsets detected from the table. 

The prefetching degree based on common offsets, i.e., 
the number of common offsets, used for cold zones should 
be restricted by two aspects: (1) prefetch accuracy and (2) 
the overlap with original AMPM.  

Prefetch accuracy is important to adjust the prefetch 
degree. The one-bit “prefetch” field is used to get the 
prefetch accuracy information. This bit is set when a 
prefetch request is issued with this offset. Then if a demand 
access results in a prefetch hit at this offset, the 
corresponding “counter” will be increased by 2 and the 
corresponding “pref” bit is reset. At the end of each epoch, 
all the entries in the table will be checked. The counter 

value will be right-shifted by 1 bit and the counter values of 
the entries whose prefetch bit is set will be further decreased 
by 2 since those offsets are not accessed after they are 
prefetched. 

The prefetching address overlap with the original 
AMPM is also important. If the most of the prefetch 
detected by cold zone optimization can also be detected by 
the original AMPM, the prefetch degree used for cold zone 
optimization should be decreased. To detect the overlap, we 
check whether the prefetch hit comes from both AMPM and 
cold zone optimization. 

Also, to prevent same prefetch requests from being 
issued multiple times we add a new state in AMPM called 
“cold zone access”.  A cache line will be set to this state if it 
is prefetched by cold zone optimization. The cache lines in 
this state will not be prefetched again.  

 

Figure 2. Common Offset Table entry. 

3.2.  Detect Inaccurate BitMap States 

 To detect whether the current state of each zone is 
accurate or not, we construct a set of conflict counters. 
Every zone in AMPM is attached with a conflict counter to 
track how inaccurate the current information in the zone is. 
If one page is evicted from AMPM, its corresponding 
conflict counter will be reset. For an access, which misses in 
the cache but is marked as “access” or “prefetch” in AMPM, 
the counter associated with the zone will be increased. The 
larger the counter is, the more inaccurate the information in 
the zone is. In each epoch, the conflict counters will be 
checked and the corresponding page will be reset in AMPM 
(all bitmaps will be cleared) if the entry value is above a 
threshold that we set in advance.  

Besides our approach, there are two alternative ways to 
fix inaccurate states in zone. The first one is to reset the 
corresponding bit in the zone once we detect inaccurate 
block status. However, this approach only reset the 
inaccurate information we have observed but have no 
capability to reset the inaccurate information we have not 
seen in advance. The second approach is to reset the 
corresponding bit on every block eviction. This approach 
can eliminate the inaccurate information once it is generated. 
But the disadvantage of this approach is that it cannot track 
the blocks which are evicted silently (e.g. the blocks 
eviction due to inclusion policy). Thus this approach cannot 
guarantee the information in the AMPM is accurate either. 
Considering the disadvantages of these two alternatives, we 
did not use them in our implementation.  

3.3.  Configurable Block Size Monitor 

We use a block size monitor to select the best block size 
used for prefetching. As previous research [5] has shown, 
sampling provides an accurate way to get the complete 
cache information. The block sizing monitor is composed of 
a set of auxiliary tag directories (ATD) as shown in Figure 3. 

Pref Counter Offset LRU 



 

Figure 3. Organization of auxiliary tag directories (ATDs).  

As shown in Figure 3, ATD-64 is used for the 64B cache 
line size and ATD-128/ATD-256/ATD-512 maintains the 
shadow tags at the 128B/256B/512B cache line size 
granularity. With set sampling, the ATDs monitor the 
address stream to the sampled sets in the L2 cache. We 
ensure that all ATDs monitor the same address stream, 
which constrains the beginning index of the sampled sets to 
be a multiple of 8 in this case. 

The cache line size configuration policy is as follows: all 
four hit counters and access counters are collected for the 
cache line sizes of 64B, 128B, 256B and 512B. Then to take 
both bandwidth and hit rate into consideration, we calculate 
a score as following: 

Score = hit – A * (access – hit) * block_size              (1) 

We set the parameter A as 1/64 based on our 
experimental results. 

Every time the locality monitor selects the cache line 
size with the highest score. We record the cache line size 
then shift all hit and miss counters to the right by 1 bit so 
that we can keep part of the history information but not rely 
too much on the history for prediction. 

Prefetch requests issued by the CBS-directed prefetcher 
will be sent to LLC to save L2 MSHRs and avoid L2 cache 
pollution. 

3.4.  Two-Level Prefetching 

In DPC2 framework the blocks can be prefetched into 
L2 or LLC. Thus, we add a new status into AMPM called 
“LLC_prefetch”. If the block is prefetched into L2 then it 
will be placed into state: “prefetch”. If it is prefetched into 
LLC then its state will be set as “LLC_prefetch”. During 
AMPM prefetching, we will assign higher priority to the 
candidate which is never prefetched and lower priority to 
the candidate which is not prefetched in L2 but has been 
prefetched into LLC. The pseudo code of this scheme is 
shown in Figure 4. 

3.5.  Prefetch Filter 

The original AMPM will issue prefetch requests no 
matter a demand access misses or hits in the cache. This will 
incur a large number of prefetch requests which will pollute 
the L2 cache. So, in our design we only prefetch on cache 
miss or prefetch hit. To achieve this we add one bit 
“prefetch” to each block in the cache to indicate if this block 
is brought into cache by demand or prefetch. The prefetch 
bit will be set when a block is inserted into cache by 
prefetching and reset when the block is accessed later. 

 
Figure 4. Two-level prefetch pseudo code 

4. Complexity and Overhead 

In our prefetcher design, we include the following 
structures: a common offset table, a conflict table and block 
sizing monitors.  

For the block sizing monitors we sample the cache sets 
with a ratio of 1/16. Therefore, with 64-bit addresses, for a 
8-way set associative 256KB L2 cache with the 64B line 
size, the storage cost of an ATD-64 is: 1/16 * 256KB/64B * 
(64-6-9 bits) = 1.532KB; the cost of an ATD-128 is: 1/16 * 
256KB/128B * (64-7-8 bits) = 0.766KB; the cost of an 
ATD-256 is: 1/16 * 256KB/256B * (64-8-7) = 0.383KB; 
and the cost of an ATD-512 is 1/16 * 256KB/512B * (64-9-
6) =0.191KB. Therefore, the overall storage cost of the per-
core ATDs is 2.872KB 

The total storage requirement for our prefetcher is 
summarized in Table 1.  

Components Storage 

Memory 

Access 

Map 

Table 

Address Tag (64 b) 

LRU (6 b) 

Access Map (3*64 b) 

64 

entries 

2.047KB 

CBS monitor ATD 4 

ATD 

2.872KB 

Common 

Offset 

Table 

Counter (6 b) 

LRU status (6 bits) 

Offset  Map(64*6 

bits +64*1bit) 

8 

entries 

0.45KB 

Conflict 

Table 

Counter (6 bits) 64  

entries 

0.046KB 

Prefetch 

Bit 

Prefetch (1 bit) 4096 

blks 

0.5KB 

Cold  

Zone 

MSHR 

Tags (64 bits) 

LRU status (5 bits) 

32 

entries 

0.27KB 

Total   6.185KB 

Table 1. Storage requirement for prefetcher. 

//first AMPM prefetch loop 

if(find_candidate) { 

  if(candidate not prefetched) { 

    if(enough mshr entries)  

      prefetch candidate to L2 

    else  

      prefetch candidate to LLC 

       } } 

//second AMPM prefetch loop 

if(prefetch block < prefetch degree) { 

  if(find_candidate) { 

    if(candidate prefetched into LLC) { 

      if(enough mshr entries)  

        prefetch candidate to L2 

}  }   } 

 



5. Evaluation 

We evaluate our prefetcher using the DPC2 framework 
using the provided configurations. We use the SPEC CPU 
2006 benchmarks [2] in our experiments. For each workload, 
we skip the first 1 billion instructions, warm up the cache 
using the next 10 million instructions, and run for the next 
100 million instructions to get the performance results. 

Figure 5 shows the achieved speedups compared with 
the baseline without prefetching and the original AMPM 
prefetching scheme.  From Figure 5 we could see our 
optimized prefetcher outperforms the baseline without 
prefetching by 10.8%. Compared with the original AMPM, 
our scheme achieves a speedup of 0.76% on average. 
Among all the benchmarks, our scheme can get a maximum 
speedup of 5.3% for the benchmark zeusmp. 

The final performance is not improved too much 
compared with the original AMPM. The first reason is 
AMPM has done a good job within the zone and our 
optimization can work only for the benchmarks with some 
specific trace properties. The second reason is that since the 
current DPC2 framework will delay the L2 access until the 
block is returned if there is a hit in MSHR. It means that if 
we prefetch accurately but a little late, then the next chance 
to prefetch will be delayed. This scenario can be seen for 
benchmark milc, for which we reduce the L2 miss rate 
significantly but the performance improvement is not 
obvious.   

6. Future Work and Conclusions 

The other possible optimization which could be 
integrated with AMPM is the PC-directed prefetching 
within each zone. We can construct tables to track local 
trace delta within a zone and then detect any delta pattern 
using the similar way mentioned in previous research [1]. 
This optimization can direct AMPM to prefetch in time and 
more accurately since it can provide more PC-related 
information instead of spatial information only. 

In this paper we optimize a state-of-art prefetcher, 
AMPM, and combine it with configurable block sizing. The 
resulting prefetcher has the capability to prefetch from cold 
zone and fix inaccurate states within AMPM table. Also the 
configurable block sizing scheme provides additional 
benefits when strong spatial locality is detected. 
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Figure 5. Speedups compared with no prefetcher and the original AMPM 


