
An Optimized AMPM-based Prefetcher Coupled with

Configurable Cache Line Sizing

Qi Jia, Maulik Bakulbhai Padia, Kashyap Amboju and Huiyang Zhou

Department of Electrical and Computer Engineering

North Carolina State University

qjia2@ncsu.edu, mpadia@ncsu.edu, kamboju@ncsu.edu, hzhou@ncsu.edu

Abstract

Access Map Pattern Matching Prefetch (AMPM) is a
state-of-art data prefetching technique. In this paper we
present an optimized AMPM-based prefetcher coupled with
configurable cache line/block sizing. Our optimizations
include (a) prefetching from infrequently-accessed memory
zones and (b) fixing inaccurate access states of the original
AMPM prefetcher. Also we introduce a configurable cache
line/block sizing scheme to exploit strong spatial locality if
it is detected. We evaluate our prefetcher in the DPC2
framework. For a set of 27 SPEC CPU 2006 benchmarks,
our experimental results show that our scheme achieves a
10.5% system-level performance improvement compared to
it without prefetching.

1. Introduction

Memory prefetching is widely used in modern
processors since it can fetch needed data in advance and
hide the memory access latency effectively. Current
prefetchers track data streams, which are identified based on
program counters (PCs), spatial patterns or combinations of
both, to predict and prefetch possibly-used data in the future.

Access Map Pattern Matching Prefetch (AMPM)
proposed by Ishii [3] is a state-of-art prefetcher. Different
from stride-based prefetchers and GHR-based [4]
prefetchers, AMPM is not based on PCs. AMPM attaches
concentration zones with cache-line bitmaps to identify the
spatial pattern of each equal-sized zone. However, AMPM
cannot make effective predictions when the zone just starts
being accessed or when the zone is infrequently accessed,
i.e., cold zones. Also, the cache-line bitmap cannot reflect
accurate access states when parts of the blocks within the
zone are evicted from the cache.

We propose two optimizations, (1) cold zone
optimization and (2) clear zone optimization, to overcome

the limitations of the AMPM prefetcher. Furthermore, we
design an LLC prefetching algorithm based on configurable
block sizing (CBS).

The cold zone optimization tracks the common offsets
within zones and prefetches these cache lines when a new
zone is encountered. The clear zone optimization tracks
whether the bitmap information within zones is accurate.
Once the bitmap of a zone is detected as inaccurate, the
zone will be evicted from AMPM such that the new/updated
spatial pattern of the zone can be reconstructed.

The CBS-based prefetcher samples the cache with
different block sizes. At the end of each epoch, the block
size which leads to highest performance, considering both
hit rate and memory bandwidth, will be selected as the
prefetching block size (PBS) for the next epoch.

In Section 2, we motivate our schemes. In Section 3 we
present the design of our prefetcher and prefetching
algorithm. In Section 4, the complexity and overhead are
discussed. In Section 5 the performance results are
presented. In Section 6, we discuss further optimizations
and conclude the paper.

2. Motivation

2.1. Cold Zone Optimization

 Figure 1 shows an example trace from the benchmark
milc. The zone size is 4kB and we also show the zone
offsets along the trace in Figure 1. From Figure 1, we can
see that each zone is accessed relatively infrequently
(around 8 times). As a result, AMPM cannot detect the
spatial pattern before the zone is evicted from AMPM.

On the other hand, there are common offsets across
different zones. From Figure 1, we can see that among the
accesses to different zones, the offsets 0x880 and 0xa80 are
common ones. If we could detect these common offsets, we

Access trace: 1bc9488d7c64880, 1bc9488d7c64a40, 1bc9488d7c648c0, … … , 1bc9488d7c64a80,
Offsets within a 4kB zone: 880, a40, 8c0, … a80
Access trace: 1bc94d0de078080, 1bc9488d7c64900, 1bc94d0de078880, 1bc94d0de078bc0, 1bc94d0de078a80
Offsets within a 4kB zone: 080, 900, 880, bc0, a80

Figure 1. L2 access trace and offset of benchmark milc.

mailto:qjia2@ncsu.edu
mailto:mpadia@ncsu.edu
mailto:kamboju@ncsu.edu
mailto:hzhou@ncsu.edu

can use them to prefetch data for those zones whose access
patterns have not been trained, i.e., when zones are cold.

2.2. Clear Zone Optimization

In AMPM, the bitmaps of each zone tracks the access
and prefetch status of each cache line in the zone. It is not
updated when a cache blocks is evicted. Thus we may get
wrong information from the bitmap and lose chances to
prefetch. For example, a part of the access bitmap in a zone
may appear as 1111 while the actual state is 1110 due to
eviction, either replaced by demanded data or replaced due
to the inclusion property. In this case, we lose the chance to
prefetch the block represented by the fourth bit since the
block is regarded as accessed in AMPM.

To deal with the inaccurate status within a zone, we can
clear the bitmaps of the zone to get a chance to reconstruct
the spatial pattern.

2.3. CBS-Directed Prefetch

Applications with strong spatial locality prefer large
cache line/block sizes. With larger block sizes, the cache hit
rate will also increase. However, if the block size becomes
too large, it would not only consume memory bandwidth
and energy but also pollute the cache if the spatial locality is
strong enough. In our scheme, we resort to samplers and
design an algorithm to choose the best block size, which is
then used to direct next/previous n-line prefetching.

3. Design Overview

3.1. Common Offset Table

For the cold zone optimization, we need to detect the
common offsets across accesses to different zones. To do so,
we use a common offset table to record these offsets within
zones. Each entry is used for one distinct offset. There are 4
fields in each entry as shown in Figure 2. The 6-bit offset
field records a zone offset at the cache line granularity. The
5-bit field “counter” indicates how possible this offset will
be accessed in the future. The 1-bit “pref” field indicates
whether a prefetching request has been issued using this
offset. The LRU field is used for replacement from the
common offset table. An offset is detected as a common one
if its “counter” field is larger than a threshold. Then, when a
new zone is encountered, prefetches requests are issued
based on the common offsets detected from the table.

The prefetching degree based on common offsets, i.e.,
the number of common offsets, used for cold zones should
be restricted by two aspects: (1) prefetch accuracy and (2)
the overlap with original AMPM.

Prefetch accuracy is important to adjust the prefetch
degree. The one-bit “prefetch” field is used to get the
prefetch accuracy information. This bit is set when a
prefetch request is issued with this offset. Then if a demand
access results in a prefetch hit at this offset, the
corresponding “counter” will be increased by 2 and the
corresponding “pref” bit is reset. At the end of each epoch,
all the entries in the table will be checked. The counter

value will be right-shifted by 1 bit and the counter values of
the entries whose prefetch bit is set will be further decreased
by 2 since those offsets are not accessed after they are
prefetched.

The prefetching address overlap with the original
AMPM is also important. If the most of the prefetch
detected by cold zone optimization can also be detected by
the original AMPM, the prefetch degree used for cold zone
optimization should be decreased. To detect the overlap, we
check whether the prefetch hit comes from both AMPM and
cold zone optimization.

Also, to prevent same prefetch requests from being
issued multiple times we add a new state in AMPM called
“cold zone access”. A cache line will be set to this state if it
is prefetched by cold zone optimization. The cache lines in
this state will not be prefetched again.

Figure 2. Common Offset Table entry.

3.2. Detect Inaccurate BitMap States

 To detect whether the current state of each zone is
accurate or not, we construct a set of conflict counters.
Every zone in AMPM is attached with a conflict counter to
track how inaccurate the current information in the zone is.
If one page is evicted from AMPM, its corresponding
conflict counter will be reset. For an access, which misses in
the cache but is marked as “access” or “prefetch” in AMPM,
the counter associated with the zone will be increased. The
larger the counter is, the more inaccurate the information in
the zone is. In each epoch, the conflict counters will be
checked and the corresponding page will be reset in AMPM
(all bitmaps will be cleared) if the entry value is above a
threshold that we set in advance.

Besides our approach, there are two alternative ways to
fix inaccurate states in zone. The first one is to reset the
corresponding bit in the zone once we detect inaccurate
block status. However, this approach only reset the
inaccurate information we have observed but have no
capability to reset the inaccurate information we have not
seen in advance. The second approach is to reset the
corresponding bit on every block eviction. This approach
can eliminate the inaccurate information once it is generated.
But the disadvantage of this approach is that it cannot track
the blocks which are evicted silently (e.g. the blocks
eviction due to inclusion policy). Thus this approach cannot
guarantee the information in the AMPM is accurate either.
Considering the disadvantages of these two alternatives, we
did not use them in our implementation.

3.3. Configurable Block Size Monitor

We use a block size monitor to select the best block size
used for prefetching. As previous research [5] has shown,
sampling provides an accurate way to get the complete
cache information. The block sizing monitor is composed of
a set of auxiliary tag directories (ATD) as shown in Figure 3.

Pref Counter Offset LRU

Figure 3. Organization of auxiliary tag directories (ATDs).

As shown in Figure 3, ATD-64 is used for the 64B cache
line size and ATD-128/ATD-256/ATD-512 maintains the
shadow tags at the 128B/256B/512B cache line size
granularity. With set sampling, the ATDs monitor the
address stream to the sampled sets in the L2 cache. We
ensure that all ATDs monitor the same address stream,
which constrains the beginning index of the sampled sets to
be a multiple of 8 in this case.

The cache line size configuration policy is as follows: all
four hit counters and access counters are collected for the
cache line sizes of 64B, 128B, 256B and 512B. Then to take
both bandwidth and hit rate into consideration, we calculate
a score as following:

Score = hit – A * (access – hit) * block_size (1)

We set the parameter A as 1/64 based on our
experimental results.

Every time the locality monitor selects the cache line
size with the highest score. We record the cache line size
then shift all hit and miss counters to the right by 1 bit so
that we can keep part of the history information but not rely
too much on the history for prediction.

Prefetch requests issued by the CBS-directed prefetcher
will be sent to LLC to save L2 MSHRs and avoid L2 cache
pollution.

3.4. Two-Level Prefetching

In DPC2 framework the blocks can be prefetched into
L2 or LLC. Thus, we add a new status into AMPM called
“LLC_prefetch”. If the block is prefetched into L2 then it
will be placed into state: “prefetch”. If it is prefetched into
LLC then its state will be set as “LLC_prefetch”. During
AMPM prefetching, we will assign higher priority to the
candidate which is never prefetched and lower priority to
the candidate which is not prefetched in L2 but has been
prefetched into LLC. The pseudo code of this scheme is
shown in Figure 4.

3.5. Prefetch Filter

The original AMPM will issue prefetch requests no
matter a demand access misses or hits in the cache. This will
incur a large number of prefetch requests which will pollute
the L2 cache. So, in our design we only prefetch on cache
miss or prefetch hit. To achieve this we add one bit
“prefetch” to each block in the cache to indicate if this block
is brought into cache by demand or prefetch. The prefetch
bit will be set when a block is inserted into cache by
prefetching and reset when the block is accessed later.

Figure 4. Two-level prefetch pseudo code

4. Complexity and Overhead

In our prefetcher design, we include the following
structures: a common offset table, a conflict table and block
sizing monitors.

For the block sizing monitors we sample the cache sets
with a ratio of 1/16. Therefore, with 64-bit addresses, for a
8-way set associative 256KB L2 cache with the 64B line
size, the storage cost of an ATD-64 is: 1/16 * 256KB/64B *
(64-6-9 bits) = 1.532KB; the cost of an ATD-128 is: 1/16 *
256KB/128B * (64-7-8 bits) = 0.766KB; the cost of an
ATD-256 is: 1/16 * 256KB/256B * (64-8-7) = 0.383KB;
and the cost of an ATD-512 is 1/16 * 256KB/512B * (64-9-
6) =0.191KB. Therefore, the overall storage cost of the per-
core ATDs is 2.872KB

The total storage requirement for our prefetcher is
summarized in Table 1.

Components Storage

Memory

Access

Map

Table

Address Tag (64 b)

LRU (6 b)

Access Map (3*64 b)

64

entries

2.047KB

CBS monitor ATD 4

ATD

2.872KB

Common

Offset

Table

Counter (6 b)

LRU status (6 bits)

Offset Map(64*6

bits +64*1bit)

8

entries

0.45KB

Conflict

Table

Counter (6 bits) 64

entries

0.046KB

Prefetch

Bit

Prefetch (1 bit) 4096

blks

0.5KB

Cold

Zone

MSHR

Tags (64 bits)

LRU status (5 bits)

32

entries

0.27KB

Total 6.185KB

Table 1. Storage requirement for prefetcher.

//first AMPM prefetch loop

if(find_candidate) {

 if(candidate not prefetched) {

 if(enough mshr entries)

 prefetch candidate to L2

 else

 prefetch candidate to LLC

 } }

//second AMPM prefetch loop

if(prefetch block < prefetch degree) {

 if(find_candidate) {

 if(candidate prefetched into LLC) {

 if(enough mshr entries)

 prefetch candidate to L2

} } }

5. Evaluation

We evaluate our prefetcher using the DPC2 framework
using the provided configurations. We use the SPEC CPU
2006 benchmarks [2] in our experiments. For each workload,
we skip the first 1 billion instructions, warm up the cache
using the next 10 million instructions, and run for the next
100 million instructions to get the performance results.

Figure 5 shows the achieved speedups compared with
the baseline without prefetching and the original AMPM
prefetching scheme. From Figure 5 we could see our
optimized prefetcher outperforms the baseline without
prefetching by 10.8%. Compared with the original AMPM,
our scheme achieves a speedup of 0.76% on average.
Among all the benchmarks, our scheme can get a maximum
speedup of 5.3% for the benchmark zeusmp.

The final performance is not improved too much
compared with the original AMPM. The first reason is
AMPM has done a good job within the zone and our
optimization can work only for the benchmarks with some
specific trace properties. The second reason is that since the
current DPC2 framework will delay the L2 access until the
block is returned if there is a hit in MSHR. It means that if
we prefetch accurately but a little late, then the next chance
to prefetch will be delayed. This scenario can be seen for
benchmark milc, for which we reduce the L2 miss rate
significantly but the performance improvement is not
obvious.

6. Future Work and Conclusions

The other possible optimization which could be
integrated with AMPM is the PC-directed prefetching
within each zone. We can construct tables to track local
trace delta within a zone and then detect any delta pattern
using the similar way mentioned in previous research [1].
This optimization can direct AMPM to prefetch in time and
more accurately since it can provide more PC-related
information instead of spatial information only.

In this paper we optimize a state-of-art prefetcher,
AMPM, and combine it with configurable block sizing. The
resulting prefetcher has the capability to prefetch from cold
zone and fix inaccurate states within AMPM table. Also the
configurable block sizing scheme provides additional
benefits when strong spatial locality is detected.

Reference

[1] Dimitrov, Martin, and Huiyang Zhou. "Combining local and global

history for high performance data prefetching." Journal of

Instruction-Level Parallelism 13 (2011): 1-14.

[2] Henning, John L. "SPEC CPU2006 benchmark descriptions." ACM

SIGARCH Computer Architecture News 34.4 (2006): 1-17.

[3] Ishii, Yasuo, Mary Inaba, and Kei Hiraki. "Access map pattern

matching for high performance data cache prefetch." Journal of
Instruction-Level Parallelism13 (2011): 1-24.

[4] Nesbit, Kyle J., and James E. Smith. "Data cache prefetching using a

global history buffer." Micro, IEEE 25.1 (2005): 90-97.

[5] Qureshi, Moinuddin K., Daniel N. Lynch, Onur Mutlu, and Yale N.

Patt. "A case for MLP-aware cache replacement." ACM SIGARCH
Computer Architecture News 34, no. 2 (2006): 167-178

Figure 5. Speedups compared with no prefetcher and the original AMPM

