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Abstract 

In this paper, we propose a mechanism that monitors 

events on the prefetch queues, such as hits, misses and 

elapsed time between prefetch and demand requests, in 

order to evaluate timelines of prefetching requests. This 

information is then fed back to the prefetcher to achieve 

timely issuing of prefetches. Our prefetcher is further 

supported by a mechanism to make decisions on 

completely turning off prefetching when necessary. We 

show that a simple sequential (next-line) prefetcher 

supported by our mechanism outperforms the ampm-lite 

prefetcher and the recently-proposed sandbox 

prefetching method. Our proposed prefetcher achieves 

a 4-configuration score of 4.584 on a set of 40 SPEC 

CPU 2000, SPEC CPU 2006 and Olden benchmarks, 

while ampm-lite and sandbox prefetchers achieve 4.51 

and 4.578, respectively. We further added an ip-stride 

prefetcher to achieve an overall score of 4.616. 

I. INTRODUCTION 

Modern processors employ prefetchers to hide long 
memory latencies for demand cache misses. Prefetchers 
predict data or instruction addresses those are likely to 
be used in near future. When successful, they facilitate 
faster retrieval of data/instruction for demand requests. 
Next-line or sequential prefetching has been shown to 
provide significant performance benefits for applications 
with good spatial locality. However, they prefetch rather 
blindly because they do not employ confidence 
mechanisms. This is problematic for two reasons: 1) 
they use cache and bandwidth resources rather blindly, 
which can either reduce their benefit, or can even hurt 
the performance and power; 2) even for the applications 
with good spatial locality, they may not provide the 
potential benefits because they are not timely in issuing 
prefetches. To address the first problem, Pungsley et al. 
[1] proposed the sandbox prefetching method. In their 
method, a set of predetermined sequential offset 
prefetchers are tested by recording their predicted 
prefetching addresses in the sandbox on each demand 
access and counting the number of demand access hits 
on the recorded potential prefetch addresses in the 
sandbox. After the evaluation interval, only the 
prefetchers with sandbox scores above a threshold are 
allowed to perform prefetching in the next interval. The 
sandbox proves to be a powerful idea eliminating many 

unnecessary and potentially harmful prefetches – only 
after a prefetcher has been proven useful, it is activated. 

The second problem, although equally important in 
designing successful prefetchers, is not sufficiently 
addressed by the sandbox. If prefetch is not timely, there 
is no benefit. It is possible that a prefetch is issued too 
late so it does not hide latency sufficiently, or it is issued 
too early and possibly gets evicted from the cache 
before it is demand accessed. In the latter case, it could 
potentially harm the performance by evicting useful 
cache blocks and using the resources inefficiently. In 
this paper, we focus on both timeliness and accuracy of 
a data prefetcher. Because next-line prefetcher is simple, 
yet proven to be very effective, we propose to use a 
simple sequential prefetcher with helper mechanisms for 
guiding it to prefetch on-time. Unlike the sandbox 
method, however, we use only one sequential prefetcher 
with one testing buffer instead of many sequential 
prefetchers with different offsets and their own sandbox 
buffers to achieve a similar performance.  

Our decision engine monitors the testing buffer in 
the same spirit as the sandbox method but its operation 
and purpose are quite different (details of which are 
described in Section 2). After each evaluation period, 
the decision engine increments or decrements a distance 
counter to guide the sequential prefetcher in how far 
ahead a prefetch must be issued in the next interval to be 
useful. Decision on incrementing or decrementing the 
distance is based on several factors, such as, the number 
of demand hits in the TQ, the number of L2 misses and 
the amount and ratio of demand misses that are hit in the 
TQ. Within selected intervals, the sequential prefetcher 
is further evaluated for success by turning off 
prefetching for a range of test addresses and comparing 
whether demand accesses within that range have a better 
cache hit rate than the ones not in that range. If 
prefetching is proved not successful, the decision engine 
turns it off by setting the distance to zero. Finally, it is 
important to note that the prefetcher actively issues 
prefetches and gets evaluated at the same time using 
only one single testing buffer.  

The remainder of the paper is organized as follows. 
Section 2 discusses the motivation. Section 3 describes 
the details of the proposed prefetcher. Section 4 discuses 
the conditions for distance update decision. In Section 5, 
we discuss the hardware budget. Section 5 presents the 
results and Section 6 concludes. 



II. MOTIVATION   

Our profiling results show that majority of sequential 
offsets are positive therefore our prefetcher uses only 
positive distances. We ran a simple sequential prefetcher 
with constant distances (i.e., offsets) from 1 to 10 to 
observe the number of benchmarks that performed best 
for each distance. The results are shown in Table 1. On 
average, 16 out of 40 benchmarks have their best 
performance with a distance of 1 (the next-line). When 
the distance is greater than 6, significantly fewer 
benchmarks observe their best performances. We also 
observe that configuration has an effect on the best 
distance, even for the same benchmark.  

Although distance 1 (next-line prefetcher) seems to 
show the best promise (see Table 1), Figure 1 shows that 
the best average speedup for 40 benchmarks was 
obtained with a distance of 3, while distance 4 was a 
close second. This is because for benchmarks where 
distance 1 was the best, the performances of distances 3 
or 4 were not far off. On the other hand, for a significant 
number of benchmarks, the benefit of distance 3 or 4 
was much larger.  

Based on our initial analysis, we conclude that a 
sequential prefetcher that can adaptively change its 
distance can capture the behavior in Table 1 and Figure 
1. It is important to also mention that adaptive distance 
is not only important across benchmarks, it is also 
important within the same benchmark when program 
behavior changes. 

Table 1. The best fixed offsets for 40 benchmarks that we studied. 
Table shows the number of benchmarks that performed best for each 
distance and configuration pair. The last row is the average number of 
benchmarks that performed best using that distance. 

 Distances 

Configurations 1 2 3 4 5 6 7 8 9 10 

Config 1 14 8 5 5 4 1 1 0 1 1 

Config 2 18 6 5 5 0 2 0 1 1 2 

Config 3 18 4 4 8 4 1 0 0 0 1 

Config 4 14 9 3 4 6 2 1 0 0 1 

Average 16 8 6 4 2 2 0 0 1 1 

III. SEQUENTIAL PREFETCHER WITH 

ADAPTIVE DISTANCE (SPAD) 

Figure 2 illustrates our proposed sequential 
prefetcher. We employ a First-In-First-Out (FIFO) 
Testing Queue (TQ) to record the predicted prefetch 
addresses and the current cycle. TQ is also used as the 

 

Figure 1. Performance of sequential prefetcher with varying distances. 
Figure shows 4-configuration scores for fixed distance sequential 
prefetchers. As can be seen, distance 3 sows the best performance with 
a 4.48 score. 

prefetch filter when prefetcher is active in order to filter 
prefetch requests going to the memory system. The 
prefetcher is evaluated every 512 L2 accesses, which is 
called an interval. At the end of each interval, the 
decision engine decrements or increments the distance 
based on the evaluation at the end of an interval. When 
the distance is zero, no prefetching would occur in the 
next interval. However, the TQ continues to record addr 
+ 1 (next-line) as if a distance 1 prefetcher is active. 
This is needed to continue evaluating the prefetcher 
when it is off so that later when the prefetching is useful 
again, it can get activated. Incrementing or 
decrementing the distance is based on several factors as 
given in Section 4. 
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Figure 2. The proposed SPAD prefetcher components 

IV. DISTANCE UPDATE DECISION 

To make the distance update decision, the decision 
engine checks several conditions as follows.  

1. If the number of demand accesses that are found 
in TQ, tqhits, is less than a threshold (16 in our 
submission) and the distance is greater than 1 
(tqhits < 16 && distance > 1), distance is 
decremented.  

2. If tqhits < 16 for three consecutive intervals, 
prefetching is considered useless and distance is 
set to zero disabling the prefetching. 
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3. If tqhits >= 16, the distance update decision is 
made as follows (in this order): 

a. If the number of L2 misses, l2miss, in the 
interval is less than a threshold (10 in our 
submission), no update is made assuming 
current distance value is successful.  

b. If the difference between l2miss and the 
number of L2 misses that were found in TQ, 
tqmhits, is greater than a threshold (0.6 x 
interval size = 307 in our submission) for 
more than two consecutive intervals, distance 
is set to zero disabling prefetching for the 
next interval. 

c. Finally, l2miss/tqmhits < 2 for more than two 
consecutive intervals, distance is 
incremented. 

If tqhits >= 16, and either of the above a-c 
conditions occur more than twice while distance 
is zero, distance is set to one to turn on the 
prefetching, which guarantees that prefetching is 
not off for more than two consecutive intervals. 

Furthermore, the decision engine also checks the 
success of prefetching. This is done by disabling 
prefetches for test block addresses where blk_addr % 4 
= 2. Then we check whether or not the cache hit rate of 
the test addresses is greater than the hit rate of the 
remaining demand addresses. If it is, the prefetching is 
turned off by setting the distance to zero. The testing can 
only occur when prefetching is on. If testing proves 
prefetcing successful, the current distance between 
testing intervals is doubled. Since prefetcher continues 
to record predicted addresses into the TQ when 
prefetching is off, prefetching can be turned back on if it 
is proved successful. 

V. HARDWARE BUDGET 

Table 2 breaks down the hardware cost of the SPAD 
prefetcher by function and component. The major 
storage needed for SPAD is for its TQ. In our 
evaluation, we use a 128-entry TQ. Since SPAD 
requires very small hardware budget (4327 bits), we did 
not truncate the addresses and assume each to be 32 bits. 
SPAD provides good performance with small hardware 
budget. However, for some benchmarks, an ip-based 
prefetcher outperforms SPAD. Therefore, we have 
decided to integrate the ip-stride prefetcher that is 
provided as an example prefetcher in the competition 
framework. In this integration, we added a 128-entry 
global prefetch buffer to filter out the prefetch requests 
coming from both the SPAD and the ip-stride 
prefetcher. Overall about 29% of the competition 
hardware budget was utilized. 

Table 2: SPAD hardware cost. 

Prefetcher Components Budget 

 
Prefetch 

Queue 
Address (32 Bit) 

128 entries 

+ Tail Pointer 

(7 Bit) 

4103 

Bit 

Sequential 

(SPAD) 

Test 

Queue 

Address (32 Bit) 

 

128 entries 

+ Tail Pointer 

(7 Bit) 

4103 

bits 

Registers 

L2 Access Counter (32 Bit) 

L2 Miss Counter (32 Bit) 

Test Queue Hits Counter (32 Bit) 

Test Queue Miss Hits Counter (32 Bit) 

Interval Reg. (32 Bit) 

160 

bits 

Ip Stride Ip Stride 

IP Bit (32 Bit) 

Last Address Bit (16 

Bit) 

Last Stride Bit (8 Bit) 

LRU Bit (10 Bit) 

1024 Entries 
67584 

bits 

Total (SPAD + ip-stride) 
75950 

bits 

Percentage 29% 

 

VI. RESULTS AND CONCLUSION 

In our evaluations, we have used 40 benchmarks 
from SPEC CPU2000 [3], SPEC CPU2006 [4] and 
Olden [5] benchmark suites. We use Simpoint 2.0 [6] to 
generate representative 100M-instruction traces. The 
results were obtained for each of the four competition 
configurations: configuration 1 (no_flags), configuration 
2 (small_llc), configuration 3 (low_bandwidth) and 
configuration 4 (scramble_loads). For all simulations 
there were 10 million warmup instructions 
(warmup_instructions) followed by 90 million 
simulation instructions (simulation_instructions). 

Figure 3 shows the speedups compared to no 
prefetching performed by the SPAD, ip-stride and 
combined submitted prefetcher, respectively. SPAD 
improves the performance on four configurations by 
16.15%, 16.20%, 10.44% and 15.62%, respectively, to 
give a total competition score of 4.584. Although this 
result is significantly better than ip-stride’s 4.300 score, 
ip-stride performed better for a number of benchmarks, 
most significantly for bzip2 and soplex. SPAD provided 
no speedup for bzip2, the addition of ip-stride provided 
12% speedup for configuration 1. Another very 
significant speedup change was observed for soplex. 
While SPAD result in 3.5% speedup, with ip-stride it 
was 17%. Overall, integrating SPAD with ip-stride 
improves SPAD performance by 5.5%, on average, 
giving a score of 4.616. In comparison, AMPM-Lite [7] 



had a competition score of 4.511 and our best Sandbox 
implementation (with 32 offsets (-16 to +16)) earned a 
score of 4.578.  

Figure 4 shows the speedups for each benchmark for 
the four competition configurations. We can see that, 
ammp, milc and xalanbench are negatively affected from 
prefetching. The most significant speedups are obtained 
for bwaves, zeusmp, cactusADM, leslie3d, hmmer, 
sphinx3, health, mst, perimeter and treeadd. 

 

Figure 3: The geometric mean speedup for ip-stride, SPAD and 
combined prefetchers for configurations 1-4. 

 

Figure 4. SPAD Performance Results for all benchmarks 
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