
Pefetching On-time and When It Works
Ibrahim Burak Karsli, Mustafa Cavus and Resit Sendag

Department of Electrical, Computer, and Biomedical Engineering

University of Rhode Island, Kingston, RI, USA

(bkarsli, mcavus, sendag)@ele.uri.edu

Abstract

In this paper, we propose a mechanism that monitors

events on the prefetch queues, such as hits, misses and

elapsed time between prefetch and demand requests, in

order to evaluate timelines of prefetching requests. This

information is then fed back to the prefetcher to achieve

timely issuing of prefetches. Our prefetcher is further

supported by a mechanism to make decisions on

completely turning off prefetching when necessary. We

show that a simple sequential (next-line) prefetcher

supported by our mechanism outperforms the ampm-lite

prefetcher and the recently-proposed sandbox

prefetching method. Our proposed prefetcher achieves

a 4-configuration score of 4.584 on a set of 40 SPEC

CPU 2000, SPEC CPU 2006 and Olden benchmarks,

while ampm-lite and sandbox prefetchers achieve 4.51

and 4.578, respectively. We further added an ip-stride

prefetcher to achieve an overall score of 4.616.

I. INTRODUCTION

Modern processors employ prefetchers to hide long
memory latencies for demand cache misses. Prefetchers
predict data or instruction addresses those are likely to
be used in near future. When successful, they facilitate
faster retrieval of data/instruction for demand requests.
Next-line or sequential prefetching has been shown to
provide significant performance benefits for applications
with good spatial locality. However, they prefetch rather
blindly because they do not employ confidence
mechanisms. This is problematic for two reasons: 1)
they use cache and bandwidth resources rather blindly,
which can either reduce their benefit, or can even hurt
the performance and power; 2) even for the applications
with good spatial locality, they may not provide the
potential benefits because they are not timely in issuing
prefetches. To address the first problem, Pungsley et al.
[1] proposed the sandbox prefetching method. In their
method, a set of predetermined sequential offset
prefetchers are tested by recording their predicted
prefetching addresses in the sandbox on each demand
access and counting the number of demand access hits
on the recorded potential prefetch addresses in the
sandbox. After the evaluation interval, only the
prefetchers with sandbox scores above a threshold are
allowed to perform prefetching in the next interval. The
sandbox proves to be a powerful idea eliminating many

unnecessary and potentially harmful prefetches – only
after a prefetcher has been proven useful, it is activated.

The second problem, although equally important in
designing successful prefetchers, is not sufficiently
addressed by the sandbox. If prefetch is not timely, there
is no benefit. It is possible that a prefetch is issued too
late so it does not hide latency sufficiently, or it is issued
too early and possibly gets evicted from the cache
before it is demand accessed. In the latter case, it could
potentially harm the performance by evicting useful
cache blocks and using the resources inefficiently. In
this paper, we focus on both timeliness and accuracy of
a data prefetcher. Because next-line prefetcher is simple,
yet proven to be very effective, we propose to use a
simple sequential prefetcher with helper mechanisms for
guiding it to prefetch on-time. Unlike the sandbox
method, however, we use only one sequential prefetcher
with one testing buffer instead of many sequential
prefetchers with different offsets and their own sandbox
buffers to achieve a similar performance.

Our decision engine monitors the testing buffer in
the same spirit as the sandbox method but its operation
and purpose are quite different (details of which are
described in Section 2). After each evaluation period,
the decision engine increments or decrements a distance
counter to guide the sequential prefetcher in how far
ahead a prefetch must be issued in the next interval to be
useful. Decision on incrementing or decrementing the
distance is based on several factors, such as, the number
of demand hits in the TQ, the number of L2 misses and
the amount and ratio of demand misses that are hit in the
TQ. Within selected intervals, the sequential prefetcher
is further evaluated for success by turning off
prefetching for a range of test addresses and comparing
whether demand accesses within that range have a better
cache hit rate than the ones not in that range. If
prefetching is proved not successful, the decision engine
turns it off by setting the distance to zero. Finally, it is
important to note that the prefetcher actively issues
prefetches and gets evaluated at the same time using
only one single testing buffer.

The remainder of the paper is organized as follows.
Section 2 discusses the motivation. Section 3 describes
the details of the proposed prefetcher. Section 4 discuses
the conditions for distance update decision. In Section 5,
we discuss the hardware budget. Section 5 presents the
results and Section 6 concludes.

II. MOTIVATION

Our profiling results show that majority of sequential
offsets are positive therefore our prefetcher uses only
positive distances. We ran a simple sequential prefetcher
with constant distances (i.e., offsets) from 1 to 10 to
observe the number of benchmarks that performed best
for each distance. The results are shown in Table 1. On
average, 16 out of 40 benchmarks have their best
performance with a distance of 1 (the next-line). When
the distance is greater than 6, significantly fewer
benchmarks observe their best performances. We also
observe that configuration has an effect on the best
distance, even for the same benchmark.

Although distance 1 (next-line prefetcher) seems to
show the best promise (see Table 1), Figure 1 shows that
the best average speedup for 40 benchmarks was
obtained with a distance of 3, while distance 4 was a
close second. This is because for benchmarks where
distance 1 was the best, the performances of distances 3
or 4 were not far off. On the other hand, for a significant
number of benchmarks, the benefit of distance 3 or 4
was much larger.

Based on our initial analysis, we conclude that a
sequential prefetcher that can adaptively change its
distance can capture the behavior in Table 1 and Figure
1. It is important to also mention that adaptive distance
is not only important across benchmarks, it is also
important within the same benchmark when program
behavior changes.

Table 1. The best fixed offsets for 40 benchmarks that we studied.
Table shows the number of benchmarks that performed best for each
distance and configuration pair. The last row is the average number of
benchmarks that performed best using that distance.

 Distances

Configurations 1 2 3 4 5 6 7 8 9 10

Config 1 14 8 5 5 4 1 1 0 1 1

Config 2 18 6 5 5 0 2 0 1 1 2

Config 3 18 4 4 8 4 1 0 0 0 1

Config 4 14 9 3 4 6 2 1 0 0 1

Average 16 8 6 4 2 2 0 0 1 1

III. SEQUENTIAL PREFETCHER WITH

ADAPTIVE DISTANCE (SPAD)

Figure 2 illustrates our proposed sequential
prefetcher. We employ a First-In-First-Out (FIFO)
Testing Queue (TQ) to record the predicted prefetch
addresses and the current cycle. TQ is also used as the

Figure 1. Performance of sequential prefetcher with varying distances.
Figure shows 4-configuration scores for fixed distance sequential
prefetchers. As can be seen, distance 3 sows the best performance with
a 4.48 score.

prefetch filter when prefetcher is active in order to filter
prefetch requests going to the memory system. The
prefetcher is evaluated every 512 L2 accesses, which is
called an interval. At the end of each interval, the
decision engine decrements or increments the distance
based on the evaluation at the end of an interval. When
the distance is zero, no prefetching would occur in the
next interval. However, the TQ continues to record addr
+ 1 (next-line) as if a distance 1 prefetcher is active.
This is needed to continue evaluating the prefetcher
when it is off so that later when the prefetching is useful
again, it can get activated. Incrementing or
decrementing the distance is based on several factors as
given in Section 4.

Update Once Per Interval

Test Addr + 1

Distance ≠ 0 ?

No

Test Addr
Yes

Test Addr

Accessed L2
Memory Address

Distance ≠ 0 ?
&

Not in TQ ?
Predicted Addr

Yes

PrefetchPredicted Addr

.

.

.

Counters

Hits

Demand-Miss Hits

.

.

.

Decision Engine

Figure 2. The proposed SPAD prefetcher components

IV. DISTANCE UPDATE DECISION

To make the distance update decision, the decision
engine checks several conditions as follows.

1. If the number of demand accesses that are found
in TQ, tqhits, is less than a threshold (16 in our
submission) and the distance is greater than 1
(tqhits < 16 && distance > 1), distance is
decremented.

2. If tqhits < 16 for three consecutive intervals,
prefetching is considered useless and distance is
set to zero disabling the prefetching.

4.25

4.3

4.35

4.4

4.45

4.5

1 2 3 4 5 6 7 8 9 10

Sc
o
re
s

Distances

3. If tqhits >= 16, the distance update decision is
made as follows (in this order):

a. If the number of L2 misses, l2miss, in the
interval is less than a threshold (10 in our
submission), no update is made assuming
current distance value is successful.

b. If the difference between l2miss and the
number of L2 misses that were found in TQ,
tqmhits, is greater than a threshold (0.6 x
interval size = 307 in our submission) for
more than two consecutive intervals, distance
is set to zero disabling prefetching for the
next interval.

c. Finally, l2miss/tqmhits < 2 for more than two
consecutive intervals, distance is
incremented.

If tqhits >= 16, and either of the above a-c
conditions occur more than twice while distance
is zero, distance is set to one to turn on the
prefetching, which guarantees that prefetching is
not off for more than two consecutive intervals.

Furthermore, the decision engine also checks the
success of prefetching. This is done by disabling
prefetches for test block addresses where blk_addr % 4
= 2. Then we check whether or not the cache hit rate of
the test addresses is greater than the hit rate of the
remaining demand addresses. If it is, the prefetching is
turned off by setting the distance to zero. The testing can
only occur when prefetching is on. If testing proves
prefetcing successful, the current distance between
testing intervals is doubled. Since prefetcher continues
to record predicted addresses into the TQ when
prefetching is off, prefetching can be turned back on if it
is proved successful.

V. HARDWARE BUDGET

Table 2 breaks down the hardware cost of the SPAD
prefetcher by function and component. The major
storage needed for SPAD is for its TQ. In our
evaluation, we use a 128-entry TQ. Since SPAD
requires very small hardware budget (4327 bits), we did
not truncate the addresses and assume each to be 32 bits.
SPAD provides good performance with small hardware
budget. However, for some benchmarks, an ip-based
prefetcher outperforms SPAD. Therefore, we have
decided to integrate the ip-stride prefetcher that is
provided as an example prefetcher in the competition
framework. In this integration, we added a 128-entry
global prefetch buffer to filter out the prefetch requests
coming from both the SPAD and the ip-stride
prefetcher. Overall about 29% of the competition
hardware budget was utilized.

Table 2: SPAD hardware cost.

Prefetcher Components Budget

Prefetch

Queue
Address (32 Bit)

128 entries

+ Tail Pointer

(7 Bit)

4103

Bit

Sequential

(SPAD)

Test

Queue

Address (32 Bit)

128 entries

+ Tail Pointer

(7 Bit)

4103

bits

Registers

L2 Access Counter (32 Bit)

L2 Miss Counter (32 Bit)

Test Queue Hits Counter (32 Bit)

Test Queue Miss Hits Counter (32 Bit)

Interval Reg. (32 Bit)

160

bits

Ip Stride Ip Stride

IP Bit (32 Bit)

Last Address Bit (16

Bit)

Last Stride Bit (8 Bit)

LRU Bit (10 Bit)

1024 Entries
67584

bits

Total (SPAD + ip-stride)
75950

bits

Percentage 29%

VI. RESULTS AND CONCLUSION

In our evaluations, we have used 40 benchmarks
from SPEC CPU2000 [3], SPEC CPU2006 [4] and
Olden [5] benchmark suites. We use Simpoint 2.0 [6] to
generate representative 100M-instruction traces. The
results were obtained for each of the four competition
configurations: configuration 1 (no_flags), configuration
2 (small_llc), configuration 3 (low_bandwidth) and
configuration 4 (scramble_loads). For all simulations
there were 10 million warmup instructions
(warmup_instructions) followed by 90 million
simulation instructions (simulation_instructions).

Figure 3 shows the speedups compared to no
prefetching performed by the SPAD, ip-stride and
combined submitted prefetcher, respectively. SPAD
improves the performance on four configurations by
16.15%, 16.20%, 10.44% and 15.62%, respectively, to
give a total competition score of 4.584. Although this
result is significantly better than ip-stride’s 4.300 score,
ip-stride performed better for a number of benchmarks,
most significantly for bzip2 and soplex. SPAD provided
no speedup for bzip2, the addition of ip-stride provided
12% speedup for configuration 1. Another very
significant speedup change was observed for soplex.
While SPAD result in 3.5% speedup, with ip-stride it
was 17%. Overall, integrating SPAD with ip-stride
improves SPAD performance by 5.5%, on average,
giving a score of 4.616. In comparison, AMPM-Lite [7]

had a competition score of 4.511 and our best Sandbox
implementation (with 32 offsets (-16 to +16)) earned a
score of 4.578.

Figure 4 shows the speedups for each benchmark for
the four competition configurations. We can see that,
ammp, milc and xalanbench are negatively affected from
prefetching. The most significant speedups are obtained
for bwaves, zeusmp, cactusADM, leslie3d, hmmer,
sphinx3, health, mst, perimeter and treeadd.

Figure 3: The geometric mean speedup for ip-stride, SPAD and
combined prefetchers for configurations 1-4.

Figure 4. SPAD Performance Results for all benchmarks

ACKNOWLEDGMENT

We would like to thank the anonymous reviewers for

their helpful suggestions. This work is partly supported

by the National Science Foundation under grants CCF-

1117467, CCF-1422516 and CNS-1405862.

REFERENCES

[1] Steve Vanderwiel and David J. Lilja, “A survey of

Data Prefetching Techniques,” ACM Surveys,
1996.

[2] Seth Pugsley, Zeshan Chishti, Chris Wilkerson,
Troy Chuang, Robert Scott, Aamer Jaleel, Shih-
Lien Lu, Kingsum Chow, Rajeev
Balasubramonian, “Sandbox Prefetching: Safe,
Run-Time Evaluation of Aggressive Prefetchers,”
20th International Symposium on High-
Performance Computer Architecture (HPCA-20) ,
Orlando, February 2014.

[3] Standard Performance Evaluation Corporation
CPU2006 Benchmark Suite.
http://www.spec.org/cpu2000/

[4] Standard Performance Evaluation Corporation
CPU2006 Benchmark Suite.
http://www.spec.org/cpu2006/

[5] A. Rogers, M. Carlisle, J. Reppy, and L. Hendren,
“Supporting Dynamic Data Structures on
Distributed Memory Machines,” ACM
Transactions on Programming Languages and
Systems, Mar. 1995

[6] T. Sherwood, E. Perelman, G. Hamerly, and B.
Calder, “Automatically Characterizing Large Scale
Program Behavior,” ASPLOS, 2002.

[7] Yasuo Ishii, Mary Inaba, Kei Hiraki, “Access map
pattern matching for data cache prefetch,”
Proceedings of the 23rd international conference
on Supercomputing, 2009, Yorktown Heights, NY,
USA, June 8-12, 2009. Also in 1st Championship
Data Prefetching Competition.
http://www.jilp.org/dpc/online/papers/03ishii.pdf

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

1
7

9
.a

rt

1
8

8
.a

m
m

p

1
9

7
.p

ar
se

r

4
0

0
.p

er
lb

en
ch

4
0

1
.b

zi
p

2

4
0

3
.g

cc

4
1

0
.b

w
av

es

4
1

6
.g

am
es

s

4
2

9
.m

cf

4
3

3
.m

ilc

4
3

4
.z

eu
sm

p

4
3

5
.g

ro
m

ac
s

4
3

6
.c

ac
tu

sA
D

M

4
3

7
.le

sl
ie

3
d

4
4

4
.n

am
d

4
4

5
.g

o
b

m
k

4
4

7
.d

ea
lII

4
5

0
.s

o
p

le
x

4
5

3
.p

o
vr

ay

4
5

6
.h

m
m

er

4
5

8
.s

je
n

g

4
5

9
.G

em
sF

D
TD

4
6

2
.li

b
q

u
an

tu
m

4
6

4
.h

2
6

4
re

f

4
6

5
.t

o
n

to

4
7

0
.lb

m

4
7

1
.o

m
n

et
p

p

4
7

3
.a

st
ar

4
8

1
.w

rf

4
8

2
.s

p
h

in
x3

4
8

3
.x

al
an

cb
m

k

b
h

b
is

o
rt

em
3

d

h
ea

lt
h

m
st

p
er

im
et

er

p
o

w
er

tr
ee

ad
d

ts
p

gm
ea

n

Config 1 Config 2 Config 3 Config 4

