
Lookahead Prefetching with Signature Path

Jinchun Kim, Paul V. Gratz and A. L. Narasimha Reddy
Electrical and Computer Engineering, Texas A& M University

cienlux@tamu.edu, pgratz@gratz1.com, reddy@tamu.edu

Abstract—Existing data prefetchers speculate on spatial and
temporal locality by tracking past memory accesses. Relying
on the past memory accesses restricts the scope of prefetching
and potentially further performance improvement. In this
paper, we propose a lookahead prefetching algorithm called
Signature Path Prefetching (SPP) that accurately predicts the
next memory access pattern and exploits this future access
to initiate lookahead prefetching. Unlike prior lookahead al-
gorithms, SPP is purely based on the memory access stream
and does not require additional support from branch history,
PC, or metadata to lookahead future memory access. Within a
32KB storage limit, we evaluate SPP under different memory
constrained scenarios and find SPP outperforms the previous
competition winner AMPM prefetcher by 4% performance
improvement.

I. INTRODUCTION

Data prefetching can provide an efficient means to im-
prove the performance of modern microprocessors. The aim
of the technique is to proactively fetch useful data blocks
from long-latency off-chip DRAM to the faster on-chip
SRAM cache ahead of demand access. Typically, prefetching
techniques predict the future access pattern based on past
memory accesses. Thus, prefetching hardware speculates on
spatial and temporal locality based upon learning of past pro-
gram behavior. In these traditional prefetching techniques,
prediction is inherently limited by the number of past access
patterns that have been monitored. Moreover, prefetching
should be very accurate. Even if there is a prefetcher that can
hold limitless amount of information, prefetched data will
pollute the cache if data is unused or untimely. Therefore,
it is highly desirable to develop a prefetching algorithm that
can predict many future accesses with high accuracy.

To address both prefetching scope and accuracy, prior
works adopted lookahead mechanism into data prefetch-
ing [2], [6], [7]. Previous studies, however, suffer from high
hardware complexity and require additional support from the
core pipeline. For example, B-Fetch requires branch history
and a copy of architectural register file to perform lookahead
prefetching [2]. Although this extra information shows po-
tential to improve performance, exporting this information
down to the lower level caches implies implementation
challenges as this information is not typically required in
low-level caches [3].

In this work, we propose a simple but powerful looka-
head prefetching algorithm called Signature Path Prefetching
(SPP) that aggressively speculates beyond the current de-
mand memory access and traverses down the future memory

L1 Cache
(16KB, LRU)

L2 Cache
(128KB, LRU)

L3 Cache
(1MB, LRU) Off-­Chip

DRAM

Trained by L2 cache access

Issue prefetch

Update filter

SPP
Module

Signature Table (ST)

Pattern Table (PT)

Prefetch Engine (PE)

Demand
Prefetch

Figure 1: Overall SPP architecture

access pattern that is likely to be used. Unlike prior looka-
head prefetchers [2], [6], [7], SPP does not require additional
support from branch information, PC, or cache metadata and
is purely based on the memory access stream. Since there
are no hooks between core pipeline and SPP, the prefetching
engine can operate as a stand alone module without the
complexities of exporting core information. We evaluate SPP
with 16 different SPEC CPU 2006 benchmarks and achieve
26.1% performance improvement compared to a processor
without prefetching. Moreover, SPP outperforms AMPM
prefetcher [1], the winner of the previous data prefetching
competition by 4% on average.

II. DESIGN

The high level design of the SPP engine is illustrated
in Figure 1. The SPP module is a three-stage, pipelined
structure that consists of a Signature Table (ST) stage, a
Pattern Table (PT) stage, and the Prefetch Engine (PE). SPP
is trained by L2 cache accesses (L1 Misses) and issues
prefetch requests into the L2 read queue. The ST stage
is indexed by physical page number (PPN) and stores the
previously seen memory access pattern as a compressed 12-
bit signature. The PT stage is indexed by a history signature
generated from the ST stage and stores future access stride
patterns. The PT stage also estimates the probability that a
given access stride pattern will yield a useful prefetch. If
the stride in the PT is found to have sufficient probability
(above a configured threshold), this pattern is passed to the
PE for prefetch generation. As noted in Figure 1, prefetching
puts additional pressure on both cache and DRAM accesses.
Therefore, it is important to detect redundant prefetching
requests and filter them out properly. To avoid unnecessary
prefetching requests, we implement a filter at the PE stage.

ST	
 (Read)	

Signature	
 Last	

Blk	

+1,	
 +2,	
 +1,	
 +2	
 	

è	
 Sig	
 A	
 Blk	
 8	

+2,	
 +4,	
 +2,	
 +4	
 	

è	
 Sig	
 B	
 Blk	
 16	

+1,	
 -­‐1,	
 +1,	
 -­‐1	

è	
 Sig	
 C	
 Blk	
 20	

Index:
Sig A

Index:
Page A

PT	
 (Update)	

Stride	
 3-­‐Bit	

Counter	

+	
 1	
 	
 	
 	
 	
 	
 	
 3/8	

è	
 4/8	

+	
 2	
 6/8	

-­‐	
 1	
 3/8	

Blk (9 – 8)
= +1

Update
Stride +1

Blk 9

 New Signature Sig A’
= (Sig A << 3-Bit) XOR (+1)

PE	
 (Idle)	

	
 (1)	
 Filtering	

	
 	
 	
 	
 	
 	
 	
 redundancy	

	

	
 (2)	
 Lookahead	

	
 	
 	
 	
 	
 	
 	
 (P	
 >	
 Threshold)	

	

	
 (3)	
 Auxiliary	

	
 	
 	
 	
 	
 	
 	
 Next	
 Line	

	
 	
 	
 	
 	
 	
 	
 Prefetcher	

(a) Read previous signature (Sig A) from matching page (Page A) and
update PT with current stride (+1)

ST	
 (Update)	

Signature	
 Last	

Blk	

+2,	
 +1,	
 +2,	
 +1	
 	

è	
 Sig	
 A’	
 Blk	
 9	

+2,	
 +4,	
 +2,	
 +4	
 	

è	
 Sig	
 B	
 Blk	
 16	

+1,	
 -­‐1,	
 +1,	
 -­‐1	

è	
 Sig	
 C	
 Blk	
 20	

Index:
Page A

PT	
 (Read)	

Stride	
 3-­‐Bit	

Counter	

+	
 1	
 4/8	

+	
 2	
 6/8	

-­‐	
 1	
 3/8	

Blk 9

Index:
Sig A’

 Lookahead Signature Sig A’’
= (Sig A’ << 3-Bit) XOR (+2)

PE	
 (Ac?ve)	

	
 (1)	
 Filtering	

	
 	
 	
 	
 	
 	
 	
 redundancy	

	

	
 (2)	
 Lookahead	

	
 	
 	
 	
 	
 	
 	
 (P	
 >	
 Threshold)	

	

	
 (3)	
 Auxiliary	

	
 	
 	
 	
 	
 	
 	
 Next	
 Line	

	
 	
 	
 	
 	
 	
 	
 Prefetcher	

Prefetch
Stride +2

(b) Update new signature (SigA’) and predict next stride

Figure 2: SPP design and operations

The filter excludes prefetch requests from the PT stage that
are already in flight or have been previously demanded. We
use L2 demand, prefetch, fill, and eviction information to
update this filter. In the remainder of this section we describe
each stage of the SPP in detail.

A. Signature Table Stage

The ST is designed to capture a memory access pattern
within a 4KB physical page and to compress previous strides
into a 12-bit history signature. Figure 2 shows an example
of the SPP including the ST stage. To capture local access
patterns in a 4KB spatial region, the ST is indexed with a
hash of the PPN, tagged with the lower 8-bits of the PPN.
For simplicity, the ST is illustrated as a direct map structure
in Figure 2, in fact it is organized as a 2-way associative
cache with the PPN hash acting as an index to the set. The
table also stores the last block accessed in a page to calculate
current stride and update the PT.

Whenever there is a L2 cache access, the physical address
of this access is passed into ST to find a matching entry for
this physical page. Figure 2a shows an example of accessing
the ST with Page A and block offset Blk 9. In this case, the
ST finds matching entry for this page and is able to provide
a stored signature (Sig A). This signature is a compressed
representation of a previous access patterns to the given
page, which is generated via a series of XORs and shifts
as we discuss in the next paragraph. In this case, Sig A

represents a previous access pattern to Page A which was
(+1,+2,+1,+2). Since the ST also stores the last block offset
(Blk 8) accessed in Page A, we know that current stride in
Page A is Blk (9 - 8) = (+1). This stride is non-speculative
since it is based on a demand request from the L1 to the
L2. Therefore, we can infer that a given set of accesses (Sig
A here) will lead to a next stride of (+1). This correlation
is stored in the PT as shown in Figure 2a.

New Signature
=(Old Signature << 3-Bit) XOR (Current Stride) (1)

After updating the PT, the ST is also updated with a
new signature based on current stride (+1). Equation 1
shows how SPP generates a new history signature. The old
signature (Sig A) is left shifted 3-bits and XOR’ed with the
current stride (+1). In this way, the 12-bit signature can
represent the last four memory accesses in Page A. We note
that we refer to this signature as being compressed because
stride deltas of greater than 7 have the potential to overlap.
At this point, the new signature (Sig A’) represents a current
access pattern to Page A of (+2,+1,+2,+1). Since Sig A’
represents current access pattern, SPP searches for Sig A’ in
the PT so that it can predict the next pattern following Sig
A’. Figure 2b shows that Sig A’ is updated in the ST and
Sig A’ finds a possible prefetch candidate of stride (+2) in
the PT. The last block offset is also updated from Blk 8 to
Blk 9 in ST.

If there is no matching entry in the ST, it means that
current access pattern has not been seen before for this page
or that this page has been evicted from the ST. In both cases,
the ST is not able to provide a new signature since there is
no accumulated history for this page. One possible option
is to set the initial signature as zero. However, setting an
initial signature to zero causes substantial conflicts in PT
since every ST miss will access to the set zero of PT and
pollutes the stride pattern. To avoid such pollution, we use
current block offset as an initial signature when ST miss
occurs so that we can properly distribute initial signatures
to PT.

B. Pattern Table Stage
As described in the previous section, the PT holds the

potential next stride patterns that correspond to specific his-
tory signature. Therefore, the PT is indexed by the signature
and each set contains the predicted next stride. Unlike the
ST, whose entries correspond to each physical page, each
PT entry can be shared regardless of page number. This is
possible since multiple pages can show same memory access
pattern. In other words, if Page A and Page B show the same
access pattern, they will generate same signature, index to
same entry in the PT, and update same stride pattern in PT.
In doing so, the globally shared PT accelerates the learning
process of SPP. The PT is designed as a 4-way set associative
structure so that multiple strides can be prefetched by a

single signature. Each stride in the PT can be prefetched if
a corresponding counter is above a given prefetch threshold.
For simplicity, the PT is illustrated as a direct map structure
in Figure 2.

Figure 2a shows how the PT is updated with a history
signature. Since a matching stride (+1) that corresponds to
Sig A is found in PT, the 3-bit counter increases by one.
Once the counter value becomes greater than prefetching
threshold, this stride is considered as a prefetch candidate.
If there is no matching stride, PT replaces the entry with
the lowest counter value and decreases all other counters
in that set by one. Decreasing the counter on a PT miss
is particularly effective when a process shows a random
access pattern, since it allows SPP to automatically throttle
inaccurate prefetching.

As shown in Figure 2b, matching strides above the
prefetch threshold are marked as prefetch candidates and
delivered to the PE stage. We set the prefetch threshold to
50% in the final design. In addition, the PT provides a looka-
head candidate to the PE stage for lookahead mechanism. A
lookahead candidate is selected among prefetch candidates
whose counter value probability is above 75% lookahead
threshold. Since there could be multiple strides that exceed
75% lookahead threshold, SPP selects only one lookahead
candidate with the maximum counter value.

C. The Prefetch Engine

The main objective of the PE is to issue prefetches and
activate the lookahead mechanism. Figure 2b explains how
prefetching and lookahead is handled in the PE. First, the
PE always prioritizes issuing prefetch candidates over per-
forming lookahead since the lookahead process represents
a deeper level of speculation. To drop redundant prefetch
candidates that have already been demanded or prefetched,
we implement a filter that records a 64-bit bitmap vector per
page. Since there are 64 cache blocks in a page, a single
64-bit vector can cover the 4KB spatial region. Each bit
in a vector is set to 1 when corresponding cache block is
demanded, prefetched or filled. If the filter detects a prefetch
request that is already set to 1, this prefetch request will
be ignored and PE does not issue prefetch. The bitmap is
reset to 0 when the cache block is evicted from L2 cache.
After checking the redundancy filter, SPP issues prefetch
request (stride delta (+2)) and the request is placed on L2
read queue.

The PE initiates the lookahead process by building a
speculative lookahead signature. As shown in Figure 2b, the
lookahead signature (Sig A”) is generated from Sig A’ and
predicted stride (+2) using same Equation 1. The lookahead
signature is used to index the PT again such that SPP can
search for further prefetch and lookahead candidates down
the signature path. If Sig A” finds more prefetch candidates
in the PT, the aforementioned filtering process will be
repeated and proper prefetch candidates will be issued.
Moreover, if Sig A” finds another lookahead candidate, the

lookahead mechanism will be performed recursively until
the signature path confidence falls below the lookahead
threshold.

Although Sig A” results from the same Equation 1, Sig A”
always has lower confidence than Sig A’. This is because Sig
A’ is based on non-speculative current stride (+1) while Sig
A” is based on speculative stride (+2). Also, counter value
used to identify the lookahead candidate only provides the
probability of using a specific stride and does not guarantee
the confidence of signature path for lookahead process [5].
To emulate such path confidence with counter value, we
keep the cumulative path probability by multiplying prior
lookahead probabilities as SPP traverses down the signa-
ture path. If the cumulative path probability falls below
the lookahead threshold (75%), indicating a likelihood of
wrong signature path prediction, the lookahead process is
terminated. To naturally throttle the aggressive lookahead
process, SPP sets the maximum lookahead probability to
95%. The PE also throttles prefetch and lookahead based
on the remaining L2 cache bandwidth. Reserving L2 cache
bandwidth is desirable to avoid traffic congestion because
SPP puts prefetch requests on the L2 read queue. Therefore,
the PE does not issue prefetch or lookahead further if more
than half of L2 read queue is occupied. The auxiliary next
line prefetcher gets activated only when L2 cache read queue
is not congested and there is no prefetch candidate.

III. EVALUATION

We evaluate SPP with 16 different SPEC CPU2006 bench-
marks. Each benchmark is fastforwarded with different num-
ber of instructions according to the methodology introduced
by Khan et al. [4]. All experiment results are warmed up
with 100M instructions and simulated for additional 500M
instructions. SPP requires 30.94KB storage which satisfies
the 32KB storage limit for the prefetching competition.
Table I lists the storage breakdown.

Structure Components Number of Bits Storage

Signature
Table 512 Sets 2-Way

Valid 1 = 512 × 2 × 1

27648

239616
Bits

= 30.94
KB

Tag 8 = 512 × 2 × 8
Signature 12 = 512 × 2 × 12

Last Block 6 = 512 × 2 × 6

Pattern
Table 4096 Sets

4-Way
Valid 1 = 4096 × 4 × 1

188416
Stride 7 = 4096 × 4 × 7

Counter 3 = 4096 × 4 × 3
Lookahead
Candidate 2 = 4096 × 2

Prefetch
Engine
(Filter)

256 Sets 2-Way
Valid 1 = 256 × 2 × 1

37376Tag 8 = 256 × 2 × 8
Bitmap 64 = 256 × 2 × 64

Table I: SPP storage computation

Figure 3 shows the IPC improvement results over the
baseline processor without prefetching. We compare SPP
with four different prefetching techniques: Stream, IP Stride,
Next Line, and AMPM. Overall, SPP outperforms these

Stream: 5.1%
IP Stride: 15.4%
Next Line: 16.2%
AMPM: 22.1%
SPP: 26.1%

-­10%
0%
10%
20%
30%
40%
50%
60%
70%
80%

as
tar

bz
ip2

bw
av
es

ca
ctu
sA
DM gc

c
ge
ms lbm

les
lie
3d

lib
qu
an
tum mc

f
mi
lc

om
ne
tpp

so
ple
x

sp
hin
x3

xa
lan
cb
mk

ze
us
mp

Ge
om
ea
n

Stream IP Stride Next Line AMPM SPP

Figure 3: IPC improvement results (1MB L3 Cache and 12.8 GB/s DRAM bandwidth)

prefetchers or shows equivalent performance from most
of benchmarks except bzip2 and cactusADM. We found
that bzip2 mostly benefits from learning prefetch patterns
based on the instruction pointer (IP stride). Meanwhile,
AMPM outperforms SPP on cactusADM by 6.3%. We found
that this is due to a particularly noisy stride pattern in
cactusADM which pollutes the history signature stored in
the ST. Experimentally, we found that the impact of the
noisy stride can be minimized by generating a longer history
signature. We confirm that extending signature length from
12-bit to 13-bit allows SPP to catch up the performance of
AMPM for cactusADM. In addition, longer signature also
improves the performance of other benchmarks. However,
due to the 32KB storage limit, we restrict the signature
length to 12-bit. In geometric mean, SPP shows 26.1%
IPC improvement while AMPM shows 22.1%. Since the
performance of Stream, IP Stride, and Next Line do not
approach that of AMPM, we focus on comparing SPP and
AMPM from here on.

Figure 4 shows the geometric mean performance improve-
ment from different memory configurations. The baseline
configuration is same as Figure 3 which has 1MB L3 cache
and 12.8 GB/s DRAM bandwidth. The Small LLC config-
uration changes the size of the L3 cache to 256KB. With a
smaller L3 cache, AMPM experiences 1.5% performance
degradation while SPP shows only a 0.5% degradation
versus baseline. Due to the timely prefetching based on the
history signature, SPP utilizes the small L3 cache better than
AMPM. Low Bandwidth changes the DRAM bandwidth
of the system to 3.2 GB/s. Neither prefetching technique
performing particularly well due to the restricted bandwidth.
However, SPP still exceeds the performance of AMPM by
1.1%. Scramble Loads does not change the size of cache
or DRAM bandwidth but this configuration puts additional
randomness to the L1 access stream. In this configuration,
both prefetchers see a minor performance degradation. The
randomization impacts SPP more than AMPM since the
history signature is based on the sequence of access strides.
Still, SPP outperforms AMPM by 3.5% with the random-
ization.

22.1% 20.6%

6.1%

22.0%
26.1% 25.6%

7.2%

25.5%

0%

10%

20%

30%

Baseline Small LLC Low Bandwidth Scramble Loads

AMPM SPP

Figure 4: Geometric mean IPC improvement from different
memory configurations

IV. CONCLUSIONS

Lookahead prefetching is an attractive way to improve
traditional prefetching algorithms since it can capture more
prefetch candidates in advance. In this work, we present
SPP which does not require additional information from
core processor to perform lookahead prefetching. Our design
shows 26.1% performance improvement which exceeds the
performance of previous competition winner AMPM by 4%.

REFERENCES
[1] Y. Ishii, M. Inaba, and K. Hiraki, “Access map pattern matching for

high performance data cache prefetch,” Journal of Instruction-Level
Parallelism, vol. 13, 2011.

[2] D. Kadjo, J. Kim, P. Sharma, R. Panda, P. V. Gratz, and
D. A. Jiménez, “B-fetch: Branch prediction directed prefetching for
chip-multiprocessors,” in Proceedings of the 47th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), 2014.

[3] S. Khan, A. R. Alameldeen, C. Wilkerson, O. Mutlu, and D. A.
Jiménez, “Improving cache performance by exploiting read-write dis-
parity,” in Proceedings of the 20th International Symposium on High
Performance Computer Architecture (HPCA), 2014.

[4] S. Khan, Y. Tian, and D. A. Jiménez, “Sampling dead block prediction
for last-level caches,” in Proceedings of the 43th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), 2010.

[5] K. Malik, M. Agarwal, V. Dhar, and M. I. Frank, “Paco: Probability-
based path confidence prediction,” in Proceedings of the 14th In-
ternational Symposium on High Performance Computer Architecture
(HPCA), 2008.

[6] O. Mutlu, J. Stark, C. Wilkerson, and Y. N. Patt, “Runahead execution:
An alternative to very large instruction windows for out-of-order
processors,” in Proceedings of the 9th International Symposium on
High Performance Computer Architecture (HPCA), 2003, pp. 129–140.

[7] S. S. Pinter and A. Yoaz, “Tango: a hardware-based data prefetching
technique for superscalar processors,” in Proceedings of the 29th
annual ACM/IEEE international symposium on Microarchitecture (MI-
CRO), 1996.

