Lookahead Prefetching with

Signature Path

Jinchun Kim, Paul V. Gratz, A. L. Narasimha Reddy
Department of Electrical and Computer Engineering

TEXAS A&M

UNIVERISIT Yo



Introduction

 Previously on Data Prefetching ...
» Spatial prefetcher

» Temporal prefetcher

» Hybrid prefetcher



Introduction

 Previously on Data Prefetching ...

» Lookahead prefetcher
 Tango [Pinteretal. ‘96]
* Runahead execution [Mutlu et al. ‘03]

 B-fetch [Kadjoetal. ‘14]



Introduction

 Previously on Data Prefetching ...

» Lookahead prefetcher
 Tango [Pinteretal. ‘96]
* Runahead execution [Mutlu et al. ‘03]
 B-fetch [Kadjoetal. ‘14]

=» HIGH performance + HIGH hardware complexity
(PC, Branch, Register value, ...)



Introduction

 Previously on Data Prefetching ...

» Lookahead prefetcher
 Tango [Pinteretal. ‘96]
* Runahead execution [Mutlu et al. ‘03]
 B-fetch [Kadjoetal. ‘14]

=» HIGH performance + HIGH hardware complexity
(PC, Branch, Register value, ...)

Can we build a simple but powerful lookahead prefetcher?
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Introduction

 Signature Path Prefetching (SPP)

» Use the memory access pattern signature as a proxy for control
flow information

» Use current signature to predict
* Current prefetch

* Nextsignature (Lookahead)

» Generate signature purely from L2 reference stream without

* Program counter (PC)
* Branchinformation

e Cache metadata

> Beats previous winner AMPM [lshii et al. ‘08] by 4%! A
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O Lookahead prefetchers leverage control flow information
to inform prefetching

d Q. Can we reconstruct the control flow information from the
access pattern to the L2 or L3 cache?
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O Lookahead prefetchers leverage control flow information
to inform prefetching

d Q. Can we reconstruct the control flow information from the
access pattern to the L2 or L3 cache?

4 A. Not simple ...
Why should we focus on basic blocks?

d Q. Can we use something else for lookahead?
» Runahead
Lookahead path: Run process ahead of time =» Prefetch data
» B-Fetch
Lookahead path: Predict basic blocks = Prefetch data



O Lookahead prefetchers leverage control flow information
to inform prefetching

d Q. Can we reconstruct the control flow information from the
access pattern to the L2 or L3 cache?

4 A. Not simple ...
Why should we focus on basic blocks?

d Q. Can we use something else for lookahead?
» Runahead

Lookahead path: Run process ahead of time =» Prefetch data

» B-Fetch
Lookahead path: Predict basic blocks = Prefetch data

U A. Let’s build a lookahead path just based on
memory access stream!
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d Q. Can we build a proxy of control flow?

» Prefetching is about
next stride pattern

» Lookahead path

does not needto T

m
as control flow ¢

be exactly same

» Prefetch further
ahead without
basic blocks!
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L Overall SPP architecture

» Three stage pipelined structure

» SPP is a stand alone module separated from main core

Signature
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 Signature Table (ST: Indexed by page number)
» Capture memory access pattern within a 4KB physical page

» Compress previous strides into a 12-bit signature
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» Capture memory access pattern within a 4KB physical page
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 Signature Table (ST: Indexed by page number)
» Capture memory access pattern within a 4KB physical page

» Compress previous strides into a 12-bit signature

Accessed
Page N Block Blk 1 Blk 2 Blk 4 Blk 5
Stride <+ 1 <+ 2 +1
J
Slgnature A
Learning (+1, +2, +1)
Previous Sig A m Current Sig A
0 = 0000 0000 0000  +1 (0 << 4) A (+1) 1 = 0000 0000 0001
1 =0000 0000 0001  +2 (1 << 4) A (+2) 18 = 0000 0001 0010

18 = 0000 0001 0010 +1 (18 << 4) ~ (+1) 289 = 0001 0010 0001 1° m



 Pattern Table (PT: Indexed by signature)

» Stores the potential next stride patterns for matching signature

» Unlike the ST, each stride in PT is globally shared across pages

» Each entry in PT also has a 3-bit counter to throttle prefetching
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 Prefetch Engine (PE)

» lIssue prefetch (Threshold:50%)

Prefetch
Accessed : !
Page N Blk 1 Blk 2 Blk 4 Blk 5 Blk 7 i Blk 8 !
Block ! !
g
Stride <+ 2 +1 +2 +1 <«
L ) ‘
Y
. Signature A Learn [Sig A = +2] | (+2)
e 2 -
\ Y / Prefletch
. Signature B (+1)
Prefetching (+2, +1, +2) NPT a/7



 Prefetch Engine (PE)

» lIssue prefetch (Threshold:50%)

» Use current prefetch prediction together with current signature
to generate a lookaheadsignature (Threshold: 75%)

Prefetch
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 Prefetch Engine (PE)

» Issue prefetch (Threshold: 50%)

» Use current prefetch prediction together with current signature
to generate a lookaheadsignature (Threshold: 75%)

Prefetch Prefetch
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1 Storage overhead

Structure Components Number of Bits Storage
Valid 1 |=512x2x%x1
' T 8 |=512x2x%8
Signature | 15 goie | 2-Way ot 27648
Table Signature | 12 [=512x2 x 12
Last Block] 6 [=512Xx2X6
Valid 1 [=4096 x 4 x 1 239616
4-Way | Stride 7 1=4096 X 4 X7 Bits
Pattern =30.94
Tabl 4096 Sets Counter | 3 [=4096 x 4 x 3 | 188416 .
aonlc KB
Lookahead > 1= 4096 x 2
Candidate
Prefetch Valid 1 =256 x2x1
Engine | 256 Sets | 2-Way Tag 8 |=256x2x%x8 37376
(Filter) Bitmap | 64 [=256 x 2 x 64
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Conclusion

d Lookahead prefetching is an attractive way to
improve traditional prefetching algorithm

d SPP does not require complex HW design and
improve performance by 26.1%

1 SPP throttles inaccurate prefetching by using
confidence value

Al



Questions?
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