Lookahead Prefetching with

Signature Path

Jinchun Kim, Paul V. Gratz, A. L. Narasimha Reddy
Department of Electrical and Computer Engineering

TEXAS A&M

UNIVERISIT Yo

Introduction

 Previously on Data Prefetching ...
» Spatial prefetcher

» Temporal prefetcher

» Hybrid prefetcher

Introduction

 Previously on Data Prefetching ...

» Lookahead prefetcher
 Tango [Pinteretal. ‘96]
* Runahead execution [Mutlu et al. ‘03]

 B-fetch [Kadjoetal. ‘14]

Introduction

 Previously on Data Prefetching ...

» Lookahead prefetcher
 Tango [Pinteretal. ‘96]
* Runahead execution [Mutlu et al. ‘03]
 B-fetch [Kadjoetal. ‘14]

=» HIGH performance + HIGH hardware complexity
(PC, Branch, Register value, ...)

Introduction

 Previously on Data Prefetching ...

» Lookahead prefetcher
 Tango [Pinteretal. ‘96]
* Runahead execution [Mutlu et al. ‘03]
 B-fetch [Kadjoetal. ‘14]

=» HIGH performance + HIGH hardware complexity
(PC, Branch, Register value, ...)

Can we build a simple but powerful lookahead prefetcher?

- A

Introduction

 Signature Path Prefetching (SPP)

» Use the memory access pattern signature as a proxy for control
flow information

» Use current signature to predict
* Current prefetch

* Nextsignature (Lookahead)

» Generate signature purely from L2 reference stream without

* Program counter (PC)
* Branchinformation

e Cache metadata

> Beats previous winner AMPM [lshii et al. ‘08] by 4%! A

Overview

J

] Motivation

] Design

] Results

d Conclusion

O Lookahead prefetchers leverage control flow information
to inform prefetching

d Q. Can we reconstruct the control flow information from the
access pattern to the L2 or L3 cache?

1 Q. Can we reconstruct a basic block from L2?

Address

X+1
Y+1

S

® 3 — —

Y+ 2

X+3
Y+3

J Q. Can we reconstruct a basic block from L2?

Address
y _
Y - Basic block
= > Branch Taken
X+1
T .
: | Y+1 | — Basic block
m = » Branch Taken
e
Y+2 — Basic block
— » Branch Taken
X+3
Y+3 — Basic block

J Q. Can we reconstruct a basic block from L2?

» L1 cache filters out

memory access
stream

® 3 — —

Address
X
oz |

X+1
Y+1

X+2
Y+ 2

X+3

v -

- Basicblock...?

- Basicblock...?

} Basic block ...?

J Q. Can we reconstruct a basic block from L2?

> L1 cache filters out
X

Memaory access

stream
X +1
» Memory access -
) Y+1
gets reordered |
m
due to O3 process _—
X+2

X+3

_ Basicblock...?

-

} Basic block ...?

J Q. Can we reconstruct a basic block from L2?

> L1 cache filters out
X

Memaory access

stream
X +1
» Memory access -
) Y+1
gets reordered |
m
due to O3 process _—
X+2

» Hard to reconstruct

basic blocks based -

on memory access

X+3

_ Basicblock...?

-

} Basic block ...?

O Lookahead prefetchers leverage control flow information
to inform prefetching

d Q. Can we reconstruct the control flow information from the
access pattern to the L2 or L3 cache?

4 A. Not simple ...
Why should we focus on basic blocks?

d Q. Can we use something else for lookahead?
» Runahead
Lookahead path: Run process ahead of time =» Prefetch data
» B-Fetch
Lookahead path: Predict basic blocks = Prefetch data

O Lookahead prefetchers leverage control flow information
to inform prefetching

d Q. Can we reconstruct the control flow information from the
access pattern to the L2 or L3 cache?

4 A. Not simple ...
Why should we focus on basic blocks?

d Q. Can we use something else for lookahead?
» Runahead

Lookahead path: Run process ahead of time =» Prefetch data

» B-Fetch
Lookahead path: Predict basic blocks = Prefetch data

U A. Let’s build a lookahead path just based on
memory access stream!

d Q. Can we build a proxy of control flow?

X

X+1

Y+1

® 3 — —

Y+ 2
X+2

X +3 -

d Q. Can we build a proxy of control flow?

> Prefetching is about

next stride pattern X

X+1

» Lookahead path -

does not needto T

Y+1
be exactly same !
m
as control flow ¢ V42
X+2

X +3 . AR

d Q. Can we build a proxy of control flow?

> Prefetching is about

next stride pattern X

X+1

» Lookahead path
does not needto T

Y+1 e :
be exactly same !
m
as control flow ¢ V42
X+2

X +3 . AR

d Q. Can we build a proxy of control flow?

» Prefetching is about

next stride pattern

» Lookahead path

does not needto T

be exactly same

m

as control flow

e

X

X+1

Y+1

Y+ 2

X+2

X+3

} (X+1, Z+1) _r (X+1, Z+1) + Y+1
->

= Y+1

Y+2

d Q. Can we build a proxy of control flow?

» Prefetching is about
next stride pattern

» Lookahead path

does not needto T

m
as control flow ¢

be exactly same

» Prefetch further
ahead without
basic blocks!

X

X+1

Y+1

Y+ 2

X+2

} (X+1, Z+1) _r (X+1, Z+1) + Y+1
->

= Y+1

Y+2

L Overall SPP architecture

» Three stage pipelined structure

» SPP is a stand alone module separated from main core

Signature
Table

Sionat Last
Index: | >ignature Block Inf:Iex.

Page N SigA
—> SigA Bk —

4

i Sig B Blk 16

|

1

i Sig C Blk 20

1

|

| N/A N/A

]

Pattern
Table

PF
request

e | ounter
+1 6/7
+2 3/7
-1 2/7
N/A 0/0

>

Prefetch
Engine

Filtering
redundancy

Issue prefetch

Lookahead

Auxiliary
next line
prefetcher

 Signature Table (ST: Indexed by page number)
» Capture memory access pattern within a 4KB physical page

» Compress previous strides into a 12-bit signature

Page N Acsliscske"' Blk 1 Blk 2
Stride <+ 1
| Y ,
carnins [S
| PreviousSigA | Stride | Calculation | CurrentSigA
0= 0000 0000 0000 +1 (0 <<4) A (+1) 1 = 0000 0000 0001

 Signature Table (ST: Indexed by page number)
» Capture memory access pattern within a 4KB physical page

» Compress previous strides into a 12-bit signature

PageN Accessed g Blk 2 Blk 4

Block
Stride <+ 1 <+ 2

{ J

/

earning IR Sinatre
__PreviousSigA | Stride | _ Calculation | __ CurrentSigA ___
0 = 0000 0000 0000 +1 (0 << 4) A (+1) 1 = 0000 0000 0001
1 = 0000 0000 0001 +2 (1 << 4) A (+2) 18 = 0000 0001 0010

 Signature Table (ST: Indexed by page number)
» Capture memory access pattern within a 4KB physical page

» Compress previous strides into a 12-bit signature

Accessed
Page N Block Blk 1 Blk 2 Blk 4 Blk 5
Stride <+ 1 <+ 2 +1
J
Slgnature A
Learning (+1, +2, +1)
Previous Sig A m Current Sig A
0 = 0000 0000 0000 +1 (0 << 4) A (+1) 1 = 0000 0000 0001
1 =0000 0000 0001 +2 (1 << 4) A (+2) 18 = 0000 0001 0010

18 = 0000 0001 0010 +1 (18 << 4) ~ (+1) 289 = 0001 0010 0001 1° m

 Pattern Table (PT: Indexed by signature)

» Stores the potential next stride patterns for matching signature

» Unlike the ST, each stride in PT is globally shared across pages

» Each entry in PT also has a 3-bit counter to throttle prefetching

Page N

Accessed

Block Blk 1

Stride M\<+ 2 +1 +2

Learning

Blk 2

Blk 4

Blk 5

Blk 7

J

Signature A
(+1, +2, +1)

Learn [Sig A = +2]

=

(+2)
0/7

 Prefetch Engine (PE)

» lIssue prefetch (Threshold:50%)

Prefetch
Accessed : !
Page N Blk 1 Blk 2 Blk 4 Blk 5 Blk 7 i Blk 8 !
Block ! !
g
Stride <+ 2 +1 +2 +1 <«
L) ‘
Y
. Signature A Learn [Sig A = +2] | (+2)
e 2 -
\ Y / Prefletch
. Signature B (+1)
Prefetching (+2, +1, +2) NPT a/7

 Prefetch Engine (PE)

» lIssue prefetch (Threshold:50%)

» Use current prefetch prediction together with current signature
to generate a lookaheadsignature (Threshold: 75%)

Prefetch

Page N Acl;f’csk"'d Blk 1 Blk 2 Blk 4 Blk 5 Blk 7 BIKS |

Stride Q e +1 +2 +1 <

{ J
Y

. Signature A Learn [Sig A = +2]
L
earning (+1, +2, +1)

|

/

. Signature B
Prefetching (+2, +1, +2)

Low
e RaGRRCCEEEEEE Confidence
Lookahead Signature A Signature A (+2)
= (Signature B << ShiftBit) XOR (Stride +1) (+1, +2, +1) 0/7

 Prefetch Engine (PE)

» Issue prefetch (Threshold: 50%)

» Use current prefetch prediction together with current signature
to generate a lookaheadsignature (Threshold: 75%)

Prefetch Prefetch
Page N A‘;‘I‘:;sk"d Blk 1 Blk 2 Blk 4 BIk 5 Blk 7 BIkS | Blk 10!
‘...(...... <..‘....'

Stride (41] (42 #1 | +2 #1 Je [42 e

i SIEA - 4
Learning B3} Signature A Hit [2] (fZ)
(+1, +2, +1) 6/7

|

) SignatureB |
Prefetching (42, +1, +2)

Lookahead Signature A ST Signature A
= (Signature B << ShiftBit) XOR (Stride +1) (#1, +2, +1)

1 Storage overhead

Structure Components Number of Bits Storage
Valid 1 |=512x2x%x1
' T 8 |=512x2x%8
Signature | 15 goie | 2-Way ot 27648
Table Signature | 12 [=512x2 x 12
Last Block] 6 [=512Xx2X6
Valid 1 [=4096 x 4 x 1 239616
4-Way | Stride 7 1=4096 X 4 X7 Bits
Pattern =30.94
Tabl 4096 Sets Counter | 3 [=4096 x 4 x 3 | 188416 .
aonlc KB
Lookahead > 1= 4096 x 2
Candidate
Prefetch Valid 1 =256 x2x1
Engine | 256 Sets | 2-Way Tag 8 |=256x2x%x8 37376
(Filter) Bitmap | 64 [=256 x 2 x 64

d SPEC CPU 2006

OStream BIP Stride ONext Line BAMPM ®SPP

“ ’—E‘I _comnEE ’_II
o & \0

80%
70%
60%
50%
40%
30%
20%
10%
0%
-10%

r@“ _E i |

1 Configurations

30%
20%
10%

0%

26.1%

22.1%I

Baseline

SPP: 26.1%
AMPM: 22.1%
Next Line: 16.2%
P Stride: 15.4%
Stream: 5.1%

il el | ﬂHII E il nﬁﬂll

N N \QQ Q\®+ ‘0((\\l~ %(Q 2
\e?\ @og‘bo 06‘(\ X &Q +Q}fz>°0 & Oe;o&
EAMPM mSPP
25.6% 25.5%
0 22.0%
20.6%

Small LLC

6.1% 7-2%

Low Bandwidth

Scramble Loads m

Conclusion

d Lookahead prefetching is an attractive way to
improve traditional prefetching algorithm

d SPP does not require complex HW design and
improve performance by 26.1%

1 SPP throttles inaccurate prefetching by using
confidence value

Al

Questions?

Al

