
Not Quite My Tempo1

Matching Prefetches to Memory Access Times

1. This work was inspired by Chazelle, Simmons, and Teller’s foundational work in this area: Whiplash.
1

Mark Sutherland
Ajaykumar Kannan

Natalie Enright Jerger

{suther68,kannanaj,enright}@ece.utoronto.ca

2

3

4

Goal: Add temporal information to an SMS prefetcher.

Motivation

5

0"

0.1"

0.2"

0.3"

0.4"

0.5"

0.6"

0.7"

0.8"

0.9"

1"
40
0.P

ER
LB
EN
CH
"

40
1.B

ZIP
2"

40
3.G

CC
"

41
0.B

W
AV
ES
"

41
6.G

AM
ES
S"

42
9.M

CF
"

43
3.M

ILC
"

43
4.Z

EU
SM

P"
43
5.G

RO
M
AC
S"

43
6.C

AC
TU
SA
DM

"
43
7.L

ES
LIE
3D
"

44
4.N

AM
D"

45
0.S

OP
LE
X"

45
3.P

OV
RA
Y"

45
4.C

AL
CU
LIX
"

45
6.H

M
M
ER
"

45
8.S

JE
NG
"

46
2.L

IB
QU

AN
TU
M
"

46
4.H

26
4R
EF
"

47
0.L

BM
"

47
1.O

M
NE
TP
P"

47
3.A

ST
AR
"

Fr
ac
%o

n(
of
(P
re
fe
tc
he

s(

Useless(Prefetches(in(SMS(

0%

Our Contributions

1. Propose a framework for timely prefetching in SMS, which utilizes
temporal information to filter prefetches in the Pattern History Table.

2. Demonstrate practical improvements over SMS with a 32kB storage
budget.

SMS Prefetcher Background

Source: S. Somogyi, T. F.Wenisch, A. Ailamaki, B. Falsafi, and A. Moshovos.
Spatial Memory Streaming. SIGARCH Comput. Archit. News, 2006.

7

SMS Prefetcher Background
Representation of a Memory Region

Page Bits Accessed Cache Blocks = 1
100110100 … 1 1 1 1 0 0 0 1 1 0 1 0 1 0 1 1
110100101 … 1 0 1 0 0 1 0 1 0 0 1 0 0 1 1 0
100000010 … 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0

• Memory regions (most often the size of a physical page) are bit vectors, where a set
bit indicates that the program accessed this block.

8

SMS Prefetcher Background

9

Core & L1

L2 Cache

Main Memory

1

SMS

Active Generation Table

Pattern History Table

Observe Misses
PC+ Offset Cache Blocks

PC1+2 0 0 1 0 0 0 0 0PC1: ld A+2

SMS Prefetcher Background

10

Core & L1

L2 Cache

Main Memory

1

SMS

Active Generation Table

Pattern History Table

Observe Misses
PC+ Offset Cache Blocks

PC1+2 0 0 1 0 0 1 0 0PC1: ld A+5

SMS Prefetcher Background

11

Core & L1

L2 Cache

Main Memory

1

SMS

Active Generation Table

Pattern History Table

Observe Misses
PC+ Offset Cache Blocks

PC1+2 0 0 1 0 0 1 0 0
PC2+4 0 0 0 0 1 0 0 0

PC2: ld B+4

SMS Prefetcher Background

12

Core & L1

L2 Cache

Main Memory

1

SMS

Active Generation Table

Pattern History Table

Observe Misses
PC+ Offset Cache Blocks

PC1+2 1 0 1 0 0 1 0 0
PC2+4 0 0 0 0 1 0 0 0

PC1: ld A

SMS Prefetcher Background

13

Core & L1

L2 Cache

Main Memory

SMS

Active Generation Table

Pattern History Table

PC+ Offset Cache Blocks

PC2+4 0 0 0 0 1 0 0 0

L2: evict A

2 Eviction Transfers Entry
To PHT

PC+ Offset Cache Blocks

PC1+2 1 0 1 0 0 1 0 0

SMS Prefetcher Background

14

Core & L1

L2 Cache

Main Memory

SMS

Active Generation Table

Pattern History Table

PC+ Offset Cache Blocks

PC2+4 0 0 0 0 1 0 0 0

PC1: ld C+2

PC+ Offset Cache Blocks

PC1+2 1 0 1 0 0 1 0 0

3
Issue

Prefetches

{C, C+5}

SMS Prefetcher Background

15

Core & L1

L2 Cache

Main Memory

SMS

Active Generation Table

Pattern History Table

3
Issue

Prefetches

{p. block}

1 Observe Misses

2 Eviction Transfers Entry
To PHT

Adding Temporal Information

16

• Problem: In the bit vectors stored by SMS, we do not have any
information about the order of the accesses.

• Goal: A mechanism to distinguish various accesses within a spatial
region, preferably one that allows us to prefetch blocks in a more
timely fashion.

Adding Temporal Information

17

t

• Observe that many of our applications see the same PC generating memory
requests with different time deltas between each request.

6 31 82

H H M H H M H

3 25 69

Adding Temporal Information

18

• Add a global counter to the L2 that ticks on every cache miss.
• Define access tempo: Delta between two cache accesses.

L2 Cache
Counter: 000100

L2 Cache
Counter: 000101

Observe Cache
Miss?

Adding Temporal Information

19

• Decompose all PHT entries into multiple access tempos.
• Store each disjoint tempo in its own “slice” of SMS.

PHT:%0001111001011110100101101"

T1:%0001100001000000000100101" T2:%000011000011110100001000"

…..

Training Based on Tempo

20

• Store the access tempos in on-chip Localized Tempo Buffers (LTBs).
• During training, only set the bits of the vector corresponding to the

currently measured tempo.

4 2 5

12 8 9

1 3 1
PC Hash

LTB Age

T0:00000010010" T2:%0100110010"…

AGT Slices

Prefetching Based on Tempo

21

• Simply knowing our current access tempo is not enough to ensure
prefetch timeliness.

• Define memory tempo: Delta between when a memory request is
issued, and when the block is filled into the cache.

L2 Cache
Counter: 000100

MSHR1

MSHRN

.

.

.

Creq 1
Store Counter

Snapshot
Main Memory

Prefetching Based on Tempo

22

• Simply knowing our current access tempo is not enough to ensure
prefetch timeliness.

• Define memory tempo: Delta between when a memory request is
issued, and when the block is filled into the cache.

L2 Cache
Counter: 0010001

MSHR1

MSHRN

.

.

.

Creq 2

Calculate Memory
Tempo

Main Memory

Rushing or Dragging?

23

• Can compare the memory’s tempo against the current PC’s access
tempo at prefetch time.

PC > Memory
(Rushing)

Memory > PC
(Dragging)

• Generating requests faster than
memory is returning them.

• Prefetch only slower tempos.

• Memory is fast enough to keep up with
our requests.

• Prefetch faster tempos.

Walkthrough Example

24

Tempo&
Decoder&PC: Load [B+2]

6

LTB Age

8 4
6

1 2

10

GTB Age

12 9 14 14 9 10
12

3

T2:00000010010" T3:&0100110010"
AGT Slices

…. 4

Prefetch “Slow & V. Slow” 5

1. PC Observes Demand Request to Address [B+2]

Walkthrough Example

25

Tempo&
Decoder&PC: Load [B+2]

6

LTB Age

8 4
6

1 2

10

GTB Age

12 9 14 14 9 10
12

3

T2:00000010010" T3:&0100110010"
AGT Slices

…. 4

Prefetch “Slow & V. Slow” 5

2. Lookup Current Local Access Tempo (6)

Walkthrough Example

26

Tempo&
Decoder&PC: Load [B+2]

6

LTB Age

8 4
6

1 2

10

GTB Age

12 9 14 14 9 10
12

3

T2:00000010010" T3:&0100110010"
AGT Slices

…. 4

Prefetch “Slow & V. Slow” 5

3. Average All Elements of Global Tempo Buffer (12)

Walkthrough Example

27

Tempo&
Decoder&PC: Load [B+2]

6

LTB Age

8 4
6

1 2

10

GTB Age

12 9 14 14 9 10
12

3

T2:00000010010" T3:&0100110010"
AGT Slices

…. 4

Prefetch “Slow & V. Slow” 5

4. Decode “Rushing” or “Dragging”.

Walkthrough Example

28

Tempo&
Decoder&PC: Load [B+2]

6

LTB Age

8 4
6

1 2

10

GTB Age

12 9 14 14 9 10
12

3

T2:00000010010" T3:&0100110010"
AGT Slices

…. 4

Prefetch “Slow & V. Slow” 5

5. Prefetch Matching Tempos

Evaluation

29

Core (OoO) Memory

6-wide, 256 entry instruction window 16kB L1, 128kB L2, Fully inclusive L3

No fetch hazards. 32 entry L2 request queue

Issue 2 loads & 1 store / cycle. Open Row FR-FCFS Mem. Scheduling

tl2 = 10 cycles

Config 1: 1MB L3, 12.8 GB/s memory

Config 2: 256kB L3, 12.8 GB/s memory

Config 3: 1 MB L3, 3.2 GB/s memory

30

Normal Configuration

Absolute IPC Results

0"

0.02"

0.04"

0.06"

0.08"

0.1"

0.12"

0.14"

0.16"

0.18"

Baseline" SMS" Tempo"

IPCformcf$

mcf"

20%

Absolute IPC Results

31

Increased Low B/W Performance

32

• Decreasing memory B/W increases Tempo’s gains.

Reduction in Useless Prefetches

33

Better

Conclusion

34

1. Presented a “sliced” version of SMS that filters prefetching
decisions based on repeated PC access times.

2. Achieved 1.45% and 2.57% IPC improvement on Normal and Low
Bandwidth configurations.

3. Reduced the number of useless prefetches by 17.6%.

35

?

