Not Quite My Tempo¹

Matching Prefetches to Memory Access Times

Mark Sutherland Ajaykumar Kannan Natalie Enright Jerger

suther68,kannanaj,enright}@ece.utoronto.ca

The Edward S. Rogers Sr. Department of Electrical & Computer Engineering **UNIVERSITY OF TORONTO**

1. This work was inspired by Chazelle, Simmons, and Teller's foundational work in this area: Whiplash.

Stride Feedback

Goal: Add temporal information to an SMS prefetcher.

Motivation

Useless Prefetches in SMS

Our Contributions

- budget.

1. Propose a framework for timely prefetching in SMS, which utilizes temporal information to filter prefetches in the Pattern History Table.

2. Demonstrate practical improvements over SMS with a 32kB storage

SMS Prefetcher Background

Examples of spatially-correlated elements in DBMSs

Buffer pool page

The Edward S. Rogers Sr. Department of Electrical & Computer Engineering UNIVERSITY OF TORONTO

Source: S. Somogyi, T. F.Wenisch, A. Ailamaki, B. Falsafi, and A. Moshovos. Spatial Memory Streaming. SIGARCH Comput. Archit. News, 2006.

Page header

B-Tree key-pointer pairs

Fixed-size tuples

Tuple slot index

SMS Prefetcher Background

Representation of a Memory Region

• bit indicates that the program accessed this block.

Memory regions (most often the size of a physical page) are bit vectors, where a set

SMS Prefetcher Background

A	ctiv	ve G	iene	ratic	on T	able		
PC+ Offset		Cache Blocks						
PC1+2	0	0	1	0	0	0	0	0

SMS Prefetcher Background

A	ctiv	ve G	ene	ratio	on T	able			
PC+ Offset	Cache Blocks								
PC1+2	0	0	1	0	0	1	0	0	

SMS Prefetcher Background

A	ctiv	ve G	iene	ratio	on T	able			
PC+ Offset	Cache Blocks								
PC1+2	0	0	1	0	0	1	0	0	
PC ₂ +4	0	0	0	0	1	0	0	0	

SMS Prefetcher Background

A	ctiv	ve G	iene	ratio	on T	able			
PC+ Offset	Cache Blocks								
PC1+2	1	0	1	0	0	1	0	0	
PC ₂ +4	0	0	0	0	1	0	0	0	

SMS Prefetcher Background

The Edward S. Rogers Sr. Department
of Electrical & Computer Engineering
UNIVERSITY OF TORONTO

	ctiv	ve G	iene	ratio	on T	able		
PC+ Offset	Cache Blocks							
PC ₂ +4	0	0	0	0	1	0	0	0
	\ E	vic	tion	Tra	nef	ore	Ent	
2				То	PH1			ry
PC+ Offset	Pat	tterr	h His	To Story Cache	PH 7 Tal Block	ole		

SMS Prefetcher Background

Active Generation Table								
PC+ Offset			(Cache	Block	S		[
PC ₂ +4	0	0	0	0	1	0	0	0

PC+ Offset Pattern History Table Cache Blocks								
PC1+2	1	0	1	0	0	1	0	0

SMS

SMS Prefetcher Background

Marcelle Computer Engineering Construction C UNIVERSITY OF TORONTO

Active Generation Table

Eviction Transfers Entry 2 **To PHT**

- **Problem:** In the bit vectors stored by SMS, we do not have any information about the *order* of the accesses.
- timely fashion.

• Goal: A mechanism to distinguish various accesses within a spatial region, preferably one that allows us to prefetch blocks in a more

Observe that many of our applications see the same PC generating memory

- Add a global counter to the L2 that ticks on every cache miss.
- Define access tempo: Delta between two cache accesses.

L2 Cache

Counter: 000101

- Decompose all PHT entries into multiple access tempos.
- Store each disjoint tempo in its own "slice" of SMS.

Training Based on Tempo

- Store the access tempos in on-chip Localized Tempo Buffers (LTBs).
- During training, only set the bits of the vector corresponding to the **currently measured tempo**.

Prefetching Based on Tempo

- prefetch timeliness.
- issued, and when the block is filled into the cache.

Simply knowing our current access tempo is not enough to ensure

• Define **memory tempo**: Delta between when a memory request is

Main Memory

Prefetching Based on Tempo

- prefetch timeliness.
- issued, and when the block is filled into the cache.

Simply knowing our current access tempo is not enough to ensure

• Define **memory tempo**: Delta between when a memory request is

Main Memory

Rushing or Dragging?

Can compare the memory's ter tempo at prefetch time.

PC > Memory (Rushing)

- Generating requests faster than memory is returning them.
- Prefetch only slower tempos.

Can compare the memory's tempo against the current PC's access

Memory > PC (Dragging)

- Memory is fast enough to keep up with our requests.
- Prefetch faster tempos.

1. PC Observes Demand Request to Address [B+2]

2. Lookup Current Local Access Tempo (6)

3. Average All Elements of Global Tempo Buffer (12)

4. Decode "Rushing" or "Dragging".

5. Prefetch Matching Tempos

Core (000)

6-wide, 256 entry instruction window

No fetch hazards.

Issue 2 loads & 1 store / cycle.

Evaluation

Memory
16kB L1, 128kB L2, Fully inclusive L3
32 entry L2 request queue
Open Row FR-FCFS Mem. Scheduling
t _{l2} = 10 cycles
Config 1: 1MB L3, 12.8 GB/s memory
Config 2: 256kB L3, 12.8 GB/s memory
Config 3: 1 MB L3, 3.2 GB/s memory

Absolute IPC Results Normal Configuration

Absolute IPC Results IPC for *mcf*

Baseline

Increased Low B/W Performance

• Decreasing memory B/W increases Tempo's gains.

Reduction in Useless Prefetches

Conclusion

- 1. Presented a "sliced" version of SMS that filters prefetching decisions based on repeated PC access times.
- Bandwidth configurations.
- 3. Reduced the number of useless prefetches by **17.6%**.

2. Achieved **1.45%** and **2.57%** IPC improvement on Normal and Low

?