
Not Quite My Tempo1

Matching Prefetches to Memory Access Times

1. This work was inspired by Chazelle, Simmons, and Teller’s foundational work in this area: Whiplash.
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Goal: Add temporal information to an SMS prefetcher.



Motivation
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Our Contributions

1. Propose a framework for timely prefetching in SMS, which utilizes 
temporal information to filter prefetches in the Pattern History Table. 

2. Demonstrate practical improvements over SMS with a 32kB storage 
budget.



SMS Prefetcher Background

Source: S. Somogyi, T. F.Wenisch, A. Ailamaki, B. Falsafi, and A. Moshovos. 
Spatial Memory Streaming. SIGARCH Comput. Archit. News, 2006.
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SMS Prefetcher Background
Representation of a Memory Region

Page Bits Accessed Cache Blocks = 1
100110100 … 1 1 1 1 0 0 0 1 1 0 1 0 1 0 1 1
110100101 … 1 0 1 0 0 1 0 1 0 0 1 0 0 1 1 0
100000010 … 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0

• Memory regions (most often the size of a physical page) are bit vectors, where a set 
bit indicates that the program accessed this block.
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SMS Prefetcher Background
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Observe Misses
PC+ Offset Cache Blocks

PC1+2 0 0 1 0 0 0 0 0PC1: ld A+2



SMS Prefetcher Background
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Main Memory
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SMS Prefetcher Background
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SMS Prefetcher Background
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SMS Prefetcher Background
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SMS Prefetcher Background
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SMS Prefetcher Background
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Adding Temporal Information
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• Problem: In the bit vectors stored by SMS, we do not have any 
information about the order of the accesses. 

• Goal: A mechanism to distinguish various accesses within a spatial 
region, preferably one that allows us to prefetch blocks in a more 
timely fashion.



Adding Temporal Information
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t

• Observe that many of our applications see the same PC generating memory 
requests with different time deltas between each request. 
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Adding Temporal Information
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• Add a global counter to the L2 that ticks on every cache miss. 
• Define access tempo: Delta between two cache accesses.

L2 Cache
Counter: 000100

L2 Cache
Counter: 000101

Observe Cache
Miss?



Adding Temporal Information
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• Decompose all PHT entries into multiple access tempos.
• Store each disjoint tempo in its own “slice” of SMS.

PHT:%0001111001011110100101101"

T1:%0001100001000000000100101" T2:%000011000011110100001000"

….. 



Training Based on Tempo
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• Store the access tempos in on-chip Localized Tempo Buffers (LTBs). 
• During training, only set the bits of the vector corresponding to the 

currently measured tempo.

4 2 5 

12 8 9 

1 3 1 
PC Hash 

LTB Age 

T0:00000010010" T2:%0100110010"… 

AGT Slices 



Prefetching Based on Tempo
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• Simply knowing our current access tempo is not enough to ensure 
prefetch timeliness. 

• Define memory tempo: Delta between when a memory request is 
issued, and when the block is filled into the cache.

L2 Cache
Counter: 000100

MSHR1

MSHRN

.

.

.

Creq 1
Store Counter

Snapshot
Main Memory



Prefetching Based on Tempo
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• Simply knowing our current access tempo is not enough to ensure 
prefetch timeliness. 

• Define memory tempo: Delta between when a memory request is 
issued, and when the block is filled into the cache.

L2 Cache
Counter: 0010001

MSHR1

MSHRN

.

.

.

Creq 2

Calculate Memory
Tempo

Main Memory



Rushing or Dragging?
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• Can compare the memory’s tempo against the current PC’s access 
tempo at prefetch time.

PC > Memory
(Rushing)

Memory > PC
(Dragging)

• Generating requests faster than 
memory is returning them. 

• Prefetch only slower tempos.

• Memory is fast enough to keep up with 
our requests. 

• Prefetch faster tempos.



Walkthrough Example
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Tempo&
Decoder&PC: Load [B+2] 
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1. PC Observes Demand Request to Address [B+2]



Walkthrough Example
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Tempo&
Decoder&PC: Load [B+2] 
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2. Lookup Current Local Access Tempo (6)



Walkthrough Example
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Tempo&
Decoder&PC: Load [B+2] 
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3. Average All Elements of Global Tempo Buffer (12)



Walkthrough Example
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Tempo&
Decoder&PC: Load [B+2] 

6 
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8 4 
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12 

3 

T2:00000010010" T3:&0100110010"
AGT Slices 

…. 4 

Prefetch “Slow & V. Slow” 5 

4. Decode “Rushing” or “Dragging”.



Walkthrough Example
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Tempo&
Decoder&PC: Load [B+2] 
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5. Prefetch Matching Tempos



Evaluation
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Core (OoO) Memory

6-wide, 256 entry instruction window 16kB L1, 128kB L2, Fully inclusive L3

No fetch hazards. 32 entry L2 request queue

Issue 2 loads & 1 store / cycle. Open Row FR-FCFS Mem. Scheduling

tl2 = 10 cycles

Config 1: 1MB L3, 12.8 GB/s memory

Config 2: 256kB L3, 12.8 GB/s memory

Config 3: 1 MB L3, 3.2 GB/s memory
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Normal Configuration

Absolute IPC Results
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Increased Low B/W Performance
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• Decreasing memory B/W increases Tempo’s gains.



Reduction in Useless Prefetches
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Better



Conclusion
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1. Presented a “sliced” version of SMS that filters prefetching 
decisions based on repeated PC access times. 

2. Achieved 1.45% and 2.57% IPC improvement on Normal and Low 
Bandwidth configurations. 

3. Reduced the number of useless prefetches by 17.6%.
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