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Abstract—On chip bandwidth is a scarce resource and the
performance of prefetchers can be very sensitive to the L2 cache
bandwidth. Therefore any intelligent prefetcher should optimize
prefetches with L2 cache bandwidth as an important metric.
Furthermore, with varying workload behaviour, there is a strong
case for using multiple state-of-the-art prefetchers dynamically.

To this end, this paper proposes Slim AMPM which is a
combination of two schemes. First, Slim AMPM optimizes the
state-of-the-art prefetcher AMPM while taking into account L2
cache bandwidth. Second, for workloads that do not benefit from
AMPM prefetcher, Slim AMPM uses a dynamic selection logic
to use Delta-Correlation Prediction Tables (DCPT). Furthermore,
we find that the concept of hot-pages(pages with high re-
reference) in AMPM can be improved by making hot-pages more
reflective of the lines being in the L2 cache or the last level
cache (LLC), to better handle cache pollution. Additionally, we
propose policies to better refresh AMPM hot-pages for longer
workloads. These optimizations provide a speedup of 19.5% and
3.3% over no prefetching and AMPM with the best prefetch
degree, respectively, for multiple configurations.

I. INTRODUCTION

In the age of very large data sets[1] and complex work-
loads, designers strive to improve performance by using intelli-
gent data prefetching. Since a prefetcher moves data inside the
cores alongside demand requests, the on-chip bandwidth of the
system needs to be efficiently utilized. Furthermore, designers
must ensure that prefetch requests do not pollute caches and
increase the latency of demand requests. To make matters
worse, with an increase in the number of cores, the on-chip
bandwidth and caches become scarce resources. The goal of
this paper is to provide insights into the merits of co-optimizing
prefetches by taking into account on-chip bandwidth and cache
pollution. To this end, we propose Slim AMPM, a hybrid
of two state-of-the-art prefetching techniques, AMPM[2] and
DCPT[3]. Slim AMPM co-optimizes for L2 cache bandwidth
and Last Level Cache pollution.

A. Efficiently Handling On-Chip Bandwidth

A Miss Status Holding Register (MSHR) is a structure that
keeps track of pending requests. Prefetch requests consume
bandwidth by queuing into the MSHR while accessing the
next level of the memory hierarchy. Unfortunately, the size
of MSHR is fixed, and therefore, MSHRs must ideally queue
only the most useful prefetches. However, not all prefetches

are useful, and queuing wasteful prefetches inefficiently con-
sumes on-chip bandwidth. Furthermore, in the limiting case
wherein the MSHR is filled with wasteful prefetches, demand
requests cannot occupy the MSHR, thereby stalling execution.
Therefore, on-chip bandwidth can be handled efficiently by
developing policies that handle prefetch access placement into
MSHRs.

Based on the access pattern, prefetchers can be classified
into regular access and irregular access prefetchers. Most cur-
rent state-of-the-art prefetchers do not account for bandwidth
and hence do not manage the MSHR efficiently. Address Map
Pattern Matching (AMPM) [2] is one of the state-of-the-art
regular access prefetcher that falls into this category. AMPM
keeps track of previous accesses to lines in “hot-pages” to
find access patterns, such as strides. This enables AMPM to
determine the number of cache lines (stride) to skip before
prefetching a useful cache line based on history. However,
AMPM checks all possible stride lengths within a “hot-page”
at once, and, as a result, it can waste bandwidth and increase
cache pollution by sending bad prefetches when accesses are
not following those stride patterns. Thus, AMPM often has
high coverage but low accuracy, which can hurt bandwidth.
Furthermore, a “hot-page” tracked too long may not be indica-
tive of what is inside the cache, which can cause wasteful and
incorrect stale prefetches. To handle MSHRs queues efficiently,
Slim AMPM configures for the bursty bandwidth usage and
takes into account stale prefetches.

As another drawback, AMPM does not prefetch well for
irregular access patterns. Due to this, workloads with irregular
access patterns will waste on-chip bandwidth if they employ
AMPM. Ideally, we want to be able to prefetch for both
the regular and irregular patterns efficiently. This paper pro-
poses a bandwidth-efficient hybrid of a regular access-pattern
prefetcher AMPM with an irregular access-pattern prefetcher,
Delta Correlating Prediction Tables [3], to handle both access
patterns effectively.

B. Mitigating Cache Pollution Due to Wasteful Prefetches

Demand request can be serviced quicker if they encounter
higher cache hits. Unfortunately, a prefetcher places its data in
the cache alongside useful data. Due to this, wasteful prefetch
requests can cause useful lines to be evicted from the cache.
Eviction of useful cache lines and replacing it with wasteful



prefetched lines is called cache pollution. While it is possible
to change the number of prefetches issued (aggressiveness)
based on cache pollution[2], we find that doing so is not ef-
fective. This is because such an optimization causes bandwidth
to be consumed in a bursty manner, impacting performance. To
this end, our paper improves on the concept of “hot-pages” in
AMPM to make tracking of “hot-pages” more reflective of the
lines currently in the L2 cache or the last level cache (LLC)
and effectively handles cache pollution.

II. DESIGN

We show how to design for bandwidth and cache pollution,
by building on state-of-the-art regular and irregular access-
pattern prefetching using DCPT and AMPM.

For regular memory access patterns, prefetching has been
successful because stream and stride prefetchers are effective,
small, and simple. For irregular access patterns, prefetching
has proven to be more problematic. Numerous solutions have
been proposed, but there appears to be a basic design trade-off
between storage and effectiveness, with large storage required
to achieve good coverage and accuracy.

Regular Access Prefetcher

We build upon the current state-of-the-art regular access-
pattern prefetching algorithm, called Access Map Pattern
Matching (AMPM). AMPM operates by keeping access history
of a large number of pages at once and searching for all
possible strides at once. AMPM keeps access history by
dividing the memory address space into memory regions of
a set size, called “zones.” AMPM then allocates one or two
bitmaps for each “zone,” with each bit corresponding to a
cache line covered by the zone, to keep track of which lines
have been accessed. To reduce space requirements, it only
keeps access history of recently accessed zones, called “hot
zones.” The AMPM prefetcher employs two key components:
a memory access map and pattern matching logic.

Memory Access Map: The memory access map is an
indexed structure that keeps access-history information for
each “hot zone.” For each “hot zone,” a bitmap records which
cache lines inside the “zone” have been accessed, and another
bitmap records which cache lines inside the “zone” have been
prefetched. AMPM uses this access history to predict strides.
But if the access map becomes stale, the prefetches become
less useful. As such, this structure should be kept up-to-date.

To keep storage requirements low and keep memory access
map up-to-date, AMPM keeps track of only a set number
of “hot zones” at once. If a memory access occurs in a
new “zone” arrives, an older “zone” is evicted to make room
to track access history for the new “zone.” This process of
eviction has the benefit of refreshing the access map every so
often.

Pattern Matching Logic: The pattern matching logic is
a combinational logic for detecting memory access patterns
from the memory locations held in the memory access map.
AMPM detects strides by using the history information in the
memory access map and the current access. If the current
memory access is to x, and if (x - n) and (x - 2n) have been
accessed previously, AMPM predicts (x + n) will be accessed.

To achieve high coverage, AMPM simultaneously looks for all
possible strides within the “zone” accessed.

Irregular Access prefetcher

A drawback of AMPM is that it does not handle irregular
access patterns well and therefore, wastes bandwidth and
increases cache pollution by sending inaccurate prefetches
when accesses are not following stride patterns. To overcome
this problem, an irregular access-pattern prefetcher is desired.
Some of them include the Irregular Stream Buffer (ISB)[4],
Spatial Memory Streaming (SMS)[5], Program Counter/ Delta
Correlation (PC/DC)[6], and the more recent Delta Correlating
Prediction Tables (DCPT)[3]. Although these algorithms have
a superior performance compared to their regular access-
pattern prefetching counterparts, they require huge storage.

One proposal to reduce storage overhead is to only record
the deltas between two accesses handled by a single-table-
based approach called DCPT[3]. DCPT operates by storing
access-history, stored as deltas, into a table hashed by PC. If a
PC hits in the DCPT, a delta is calculated based on current and
previous address stored in the table, and, if deltas match, they
are added to the current address and the remaining deltas to
form candidate prefetches. Further, these candidates go through
a filtering stage where prefetches which have been previously
marked are filtered out. Additionally, any prefetches outside
the current page are also ignored. Finally, the prefetches that
satisfy all the valid prefetch cases will be sent to the L2/LLC.

The proposed methodology in this paper, for Slim AMPM,
is a combination of a regular access-pattern prefetcher, such
as AMPM, and an irregular access-pattern prefetcher, such as
DCPT, in a bandwidth and pollution-efficient manner. When
combined, both irregular and regular access patterns can be
fetched ahead of time, with a minimal amount of storage,
bandwidth, and cache pollution overhead. We explore these
design parameters in the following subsections.

A. Optimizing for Bandwidth

1) For Bandwidth: AMPM: To reduce AMPMs bursty
bandwidth usage and false prefetches, Slim AMPM adjusts the
number of candidate strides dynamically. Through analysis by
sandbox prefetching[7], we have found that strides -4 to 4 are
most accurate, with -6/6 and -8/8 being accurate at times as
well. By default, Slim AMPM limits candidate prefetch strides
from -4 to 4, and it increases candidate strides when coverage
and accuracy are low (<90% accuracy and <50% coverage).
Limiting prefetch strides has the dual benefit of reducing false
prefetches and reducing bursty prefetch behavior in the case
of embarrassingly streaming benchmarks.

Additionally, prefetches are done to the LLC by default to
reduce l2 bandwidth contention. But, in the case of high L2
MPKI or low coverage, we prefetch into the L2 cache as well
to fully utilize both caches. To account for cache pollution, we
adjust the threshold to insert into L2 based on L2 cache hit rate.
The idea is, the lower the hit rate, the more we can prefetch
to L2 without polluting the cache. Another key point is that
filling the L2 MSHR with inaccurate prefetches can degrade
performance. So, when the prefetch accuracy is critically low,
we penalize the L2 insertion threshold to reduce the number
of L2 prefetches.



2) For Bandwidth: Delta-Correlating Prediction Tables:
To reduce AMPMs false prefetches in the case of random
or pointer-chasing benchmarks, one can use DCPT in com-
bination with AMPM for more accurate prefetches. We can
capture both irregular and regular phases by using both AMPM
and DCPT. However, when used in combination, AMPM can
overshoot and fetch bad prefetches during irregular phases,
unnecessarily consuming bandwidth. As such, we design our
hybrid to use DCPT when it is able to prefetch, and AMPM
when DCPT cannot. When configured as DCPT → AMPM as
in Figure 1, Slim AMPM is able to prefetch both irregular and
regular phases, while minimizing bad prefetches for pointer
chases.

B. Optimizing for Cache Pollution

An intelligent prefetcher should also be able to account
for cache pollution. One way to handle cache pollution is to
adjust aggressiveness based on L2 cache hit rate. However, in
the case of AMPM, adjusting aggressiveness affects bandwidth
negatively by making it bursty. Instead, the concept of “hot
zones1,” in AMPM is adapted to handle cache pollution.

1As DPC-2 framework allows maximum zone size of a single page, we call
“hot zones” “hot-pages” to more accurately show space usage.
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Fig. 1 Flowchart for the proposed Slim AMPM prefetcher. The
backbone comprises a Hybrid DCPT → AMPM sceme.
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Fig. 2 IPC with different AMPM page counts for the mcf benchmark.
An experiment was done to show that the IPC consistently peaks at
a page count of 384.

LLC and Bandwidth Configurations

Configuration 1: L3 size is 1 MB. Memory frequency is 1600 MT/s (12.8 GB/s)
Configuration 2: L3 size is 256 KB. Memory frequency is 1600 MT/s (12.8 GB/s)
Configuration 3: L3 size is 1 MB. Memory frequency is 400 MT/s (3.2 GB/s)
Configuration 4: Configuration 1, with randomness added to the L1 access stream

TABLE I Slim AMPM is tested with multiple configurations to show
applicability to other infrastructure

For reference, the ideal number of “hot-pages” to use for
AMPM varies per benchmark, and this is most evidenced
by mcf in Fig. 2, where the ideal page number is 384. 384
corresponds to mapping 1.5MB of space, even though LLC is
only 1MB. This highlights the fact that number of “hot-pages”
should not be arbitrarily increased to always hit–it should be
adjusted such that “hot-pages” are more reflective of what is
inside L2 or LLC.

To make “hot” more reflective of L2 or LLC, we assume
a baseline of 512 fully associative AMPM “hot-pages”, and
decrease the number of pages used when AMPM page miss
rate is high. What this means is that if AMPM page miss rate
is high (>.5%), the benchmark accesses many unique pages,
and likely causes content in L2 or LLC to change frequently.
To make AMPM “hot-pages”, more reflective of the frequent
changes in L2 or LLC, AMPM “hot-pages” span is reduced
from 2MB (512 hot-pages), to 1.5MB (384) or .8MB (200),
to refresh more frequently. Additionally, to guarantee AMPM
pages are always refreshed, for longer workloads, a random
replacement policy is used 1% of the time.

III. EVALUATION

The prefetcher is evaluated for four configurations: 1.
default, 2. small LLC, 3. low bandwidth, and 4. random access,
as in Table I.

A. Prefetcher Configuration

The configuration of the proposed prefetcher ”Slim
AMPM” is shown in Section III-A. The table describes the
parameters used and their respective details. Table III shows
the storage overhead for the prefetcher. The two main storage
components of our prefetcher are the AMPM structure and the
DCPT table. AMPM is configured to use 512 pages, where
each page structure contains an access map and a prefetch
map vector, which are set if that particular line is accessed or
prefetched respectively. An LRU status register is also present
for LRU page replacement. Further, the page address takes up
52 bits, making up the storage overhead for this component
close to 12096 bytes.

The second component of the storage overhead is the
DCPT table which comprises a 64-bit register for the Program
Counter (PC), 64 bits for the last address that was accessed, 64
bits for the last address that was prefetched, a valid bit, an LRU
status register used for LRU replacement of DCPT entries,
and a 9-entry “Delta” register to store the corresponding deltas
between addresses. This amounts to a overhead of 12250 bytes,
when added to the AMPM storage, roughly comes out to 24446
bytes, which fits within the 32KB storage budget.



Slim AMPM Parameter Configuration

AMPM

Number pages
Replacement Policy
Acc/cov metrics
Candidate Prefetches
Prefetch to L2/LLC
Max prefetches

512, dynamically decrease use
99%LRU and 1%Random
as proposed in AMPM[2]
-4 to 4, dynamically increase
dynamic, based on L2 hit rate
2, or 1 for low bw

DCPT

DCPT Entries
Number deltas
Prefetch to L2/LLC
Max Prefetches

200
9
dynamic, based on L2 hit rate
4, or 3 for low bw

TABLE II Paremeter values for Slim AMPM. These are tuned
dynamically to reduce bandwidth consumption and to decrease cache
pollution.
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Fig. 3 IPC using three different prefetching scenarios: No Prefetch,
AMPM, and Slim AMPM is shown for configuration 1. Slim AMPM
performs better than AMPM in both regular and irregular workloads

B. Results

We evaluated our prefetcher with the DPC2 framework
for gcc, GemsFTD, lbm, leslie3d, libquantum, mcf, milc, and
omnetpp, with the 4 configurations. We have shown individual
benchmark IPC for configuration 1, and aggregate IPC for
other configurations in Table I. The simulator skips the first
100M instructions and evaluates the remaining instructions and
produces performance statistics for every period.

The evaluation results are shown in Fig. 3 and Fig. 4. Slim
AMPM performs consistently better than AMPM in almost
all of the benchmarks except omnetpp, which is a network
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Fig. 4 Slim AMPM has a speedup of 19.5% and 3.3% compared to
no prefetching and AMPM, respectively

Slim AMPM Components Entries Budget

AMPM table

Access Map(1-bit)
Prefetch Map(1-bit)
LRU status(9-bit)
Page address(52-bit)

64
64
1
1

189-bit x 512
=12096 bytes

DCPT table

Program Counter(64-bit)
Previous Address(64-bit)
Last Prefetch (64-bit)
Valid(1-bit)
LRU status(9-bit)
Delta(32-bit)
Assorted metrics

1
1
1
1
1
9

490-bit x 200
=12250 bytes

<100 bytes

Total 24446 bytes

TABLE III Storage requirements for Slim AMPM are within the total
allotted budget of 32KB.

simulator that has sudden bursts in its access pattern. With
this kind of an access pattern, the L2 cache, which commonly
observes 0% hits, would sometimes experience a series of hits.
In this case, AMPM prefetching with all strides i.e., -16 to 16,
performs better as the L2 cache is effectively empty. However,
optimizing for this bursty behavior is more likely to degrade
performance for other types of access patterns, so we do not
highly optimize for this case.

C. Performance
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Fig. 5 Speedup(%) for the 4 configurations with the four major
contributors: DCPT, Dynamic AMPM stride prefeteching, Dynamic
L2 prefetch threshold, and Dynamic AMPM page count

Almost a 4% speedup was observed for default (3.9%),
low bw (3.5%), and rand mem (3.8%) configurations because
bandwidth-optimized-ampm and DCPT work well together
for streaming and randomized workloads, respectively. We
lower AMPM and DCPT aggressiveness for low bandwidth
configurations.

A 2% speedup was observed for small LLC, because we
fetch to LLC and are sensitive to LLC size. We lower number
of ampm “hot-pages” to 1/4 of what is used for the default
case, which is a dynamic selection of 64 (256KB), 96 (384KB),
and 128 (512KB) pages.



Fig. 5 shows the breakdown of the performance impact de-
rived from the high bandwidth and cache pollution countering
strategies. Hybrid AMPM+DCPT achieved a speedup of 0.5%.
Dynamically varying AMPM stride achieved speedup of 1.2%.
Dynamically prefetching to L2 or L3 achieved a speedup of
A 0.5%. And dynamically varying “hot-page” count achieved
a speedup of 1.0%.

IV. CONCLUSION

Regular-access-pattern prefetchers like AMPM, by them-
selves do not work well for randomized workloads. They
can be improved adding a history-based predictor to prefetch
certain irregular accesses. DCPT offers an efficient way of
keeping a track of past accesses and storing the history of
patterns. Once a pattern is recognized, a number of prefetches
can be sent at one time with high confidence.

Combining modern state-of-the-art prefetchers, such as
AMPM and DCPT, works well for various types of workloads
including streaming and random, by offering high levels of
coverage and accuracy, but they can be further improved
by intelligent design to reduce their overhead in terms of
bandwidth and cache pollution.

We propose a hybrid solution called Slim AMPM that con-
tains a stripped-down bandwidth-efficient version of AMPM
along with DCPT, a pc-and-history-based prefetcher, to cover
all types of workloads, and reduce bandwidth consumption and
cache pollution while prefetching with sufficient confidence.

We evaluate our prefetcher with a 32KB budget in the
DPC2 framework. The evaluation results show almost 4% in-
crease in speedup in eight of the SPEC CPU2006 benchmarks,
for three configurations, and a 2% increase for the small llc
configuration. An overall speedup of 19.5% and 3.3% was
obtained over the no prefetching and AMPM respectively.
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